|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113 |
- \documentclass[letterpaper,10pt]{article}
-
- \usepackage{amsmath}
- \usepackage[empty,cm]{fullpage}
- \pagenumbering{gobble}
-
- \begin{document}
-
- \title{Pannellum Equirectangular Projection Reference}
- \author{Matthew Petroff}
- \date{January 2013}
- \maketitle
-
- Let a coordinate system be defined with the origin at the focal point, the
- x-axis parallel to the camera's horizontal axis with positive to the right as
- viewed from behind the camera, the y-axis parallel to the camera's vertical
- axis with positive upward as viewed from behind the camera, and the z-axis be
- perpendicular to these two axes with positive extending away from the
- camera.\footnote{Note that this is a left-handed coordinate system.}
- Let \(\lambda\) represent the panorama's longitude, \(\phi\) the panorama's
- latitude, \(\theta\) the latitudinal offset, \(\psi\) the longitudinal offset,
- and \(f\) the focal length. Let \(\mathbf{a}\) represent a point's position
- vector, \(\mathrm{R}_x(\theta)\) the latitudinal rotation matrix,
- \(\mathbf{d}\) a point's position vector in the camera's reference frame, \(x\)
- and \(y\) a point's position on the image plane, and \(p_x\) and \(p_y\) a
- point's position on an equirectangular projection.
-
- \begin{equation} \label{eq:posvec}
- \mathbf{a} = \begin{bmatrix}
- \mathbf{a}_x \\ \mathbf{a}_y \\ \mathbf{a}_z
- \end{bmatrix} = \begin{bmatrix}
- \sin(\lambda)\cos(\phi) \\ \sin(\phi) \\ \cos(\phi)\cos(\lambda) \end{bmatrix}
- \end{equation}
-
- \begin{equation} \label{eq:rotmat}
- \mathrm{R}_x(\theta) = \begin{bmatrix}
- 1 & 0 & 0 \\
- 0 & \cos(\theta) & -\sin(\theta) \\
- 0 & \sin(\theta) & \cos(\theta)
- \end{bmatrix}
- \end{equation}
-
- With a point's position vector \eqref{eq:posvec} and the latitudinal rotation
- matrix \eqref{eq:rotmat}, one can calculate a point's position in the camera's
- reference frame.\nopagebreak
-
- \begin{equation}
- \mathbf{d} = \begin{bmatrix}
- \mathbf{d}_x \\ \mathbf{d}_y \\ \mathbf{d}_z
- \end{bmatrix} = \mathrm{R}_x(\theta)\mathbf{a} = \begin{bmatrix}
- 1 & 0 & 0 \\
- 0 & \cos(\theta) & -\sin(\theta) \\
- 0 & \sin(\theta) & \cos(\theta)
- \end{bmatrix}
- \begin{bmatrix}
- \sin(\lambda)\cos(\phi) \\ \sin(\phi) \\ \cos(\phi)\cos(\lambda)
- \end{bmatrix} = \begin{bmatrix}
- \sin(\lambda)\cos(\phi) \\
- \sin(\phi)\cos(\theta) - \cos(\phi)\cos(\lambda)\sin(\theta) \\
- \sin(\phi)\sin(\theta) + \cos(\phi)\cos(\lambda)\cos(\theta)
- \end{bmatrix}
- \end{equation}
-
- Using the pinhole camera model, one can then calculate positions on the
- image plane.\nopagebreak
-
- \begin{equation}
- \begin{bmatrix} x \\ y \end{bmatrix} = \frac{f}{\mathbf{d}_z}
- \begin{bmatrix} \mathbf{d}_x \\ \mathbf{d}_y \end{bmatrix}
- = \frac{f}{\sin(\phi)\sin(\theta) + \cos(\phi)\cos(\lambda)\cos(\theta)}
- \begin{bmatrix}
- \sin(\lambda)\cos(\phi) \\
- \sin(\phi)\cos(\theta) - \cos(\phi)\cos(\lambda)\sin(\theta)
- \end{bmatrix}
- \end{equation}
-
- \begin{equation} \label{eq:xf}
- \frac{x}{f} = \frac{\sin(\lambda)\cos(\phi)}{\sin(\phi)\sin(\theta) +
- \cos(\phi)\cos(\lambda)\cos(\theta)}
- \end{equation}
-
- \begin{equation} \label{eq:yf}
- \frac{y}{f} = \frac{\sin(\phi)\cos(\theta) -
- \cos(\phi)\cos(\lambda)\sin(\theta)}{\sin(\phi)\sin(\theta) +
- \cos(\phi)\cos(\lambda)\cos(\theta)}
- \end{equation}
-
- Solving the system of \eqref{eq:xf} and \eqref{eq:yf} for \(\lambda\) and
- \(\phi\) and adding the longitudinal offset, one is able to find a point's
- position on the unit sphere from its position on the image plane.\nopagebreak
-
- \begin{equation}
- \lambda = \tan ^{-1}\left(\frac{x}{\sqrt{x^2 + \left(f \cos(\theta) -
- y \sin(\theta) \right)^2}},\frac{f \cos(\theta) - y \sin(\theta)}{\sqrt{x^2 +
- \left(f \cos(\theta) - y \sin(\theta) \right)^2}}\right) + \psi
- \end{equation}
-
- \begin{equation}
- \phi = \tan ^{-1}\left(\frac{y \cos(\theta) + f \sin(\theta)}{\sqrt{x^2 +
- \left(f \cos(\theta) - y \sin(\theta) \right)^2}}\right)
- \end{equation}
-
- Once a point's position on the unit sphere is known, it is trivial to find its
- position on an equirectangular projection.\nopagebreak
-
- \begin{equation}
- p_x = \frac{\lambda}{\pi}
- \end{equation}
- \begin{equation}
- p_y = \frac{\phi}{\frac{\pi}{2}}
- \end{equation}
-
- \end{document}
|