Pannellum Equirectangular Projection Reference

Matthew Petroff

January 2013

Let a coordinate system be defined with the origin at the focal point, the x -axis parallel to the camera's horizontal axis with positive to the right as viewed from behind the camera, the y -axis parallel to the camera's vertical axis with positive upward as viewed from behind the camera, and the z -axis be perpendicular to these two axes with positive extending away from the camera. ${ }^{1}$ Let λ represent the panorama's longitude, ϕ the panorama's latitude, θ the latitudinal offset, ψ the longitudinal offset, and f the focal length. Let a represent a point's position vector, $\mathrm{R}_{x}(\theta)$ the latitudinal rotation matrix, \mathbf{d} a point's position vector in the camera's reference frame, x and y a point's position on the image plane, and p_{x} and p_{y} a point's position on an equirectangular projection.

$$
\begin{gather*}
\mathbf{a}=\left[\begin{array}{l}
\mathbf{a}_{x} \\
\mathbf{a}_{y} \\
\mathbf{a}_{z}
\end{array}\right]=\left[\begin{array}{c}
\sin (\lambda) \cos (\phi) \\
\sin (\phi) \\
\cos (\phi) \cos (\lambda)
\end{array}\right] \tag{1}\\
\mathbf{R}_{x}(\theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right] \tag{2}
\end{gather*}
$$

With a point's position vector (1) and the latitudinal rotation matrix (2), one can calculate a point's position in the camera's reference frame.

$$
\mathbf{d}=\left[\begin{array}{l}
\mathbf{d}_{x} \tag{3}\\
\mathbf{d}_{y} \\
\mathbf{d}_{z}
\end{array}\right]=\mathrm{R}_{x}(\theta) \mathbf{a}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right]\left[\begin{array}{c}
\sin (\lambda) \cos (\phi) \\
\sin (\phi) \\
\cos (\phi) \cos (\lambda)
\end{array}\right]=\left[\begin{array}{c}
\sin (\lambda) \cos (\phi) \\
\sin (\phi) \cos (\theta)-\cos (\phi) \cos (\lambda) \sin (\theta) \\
\sin (\phi) \sin (\theta)+\cos (\phi) \cos (\lambda) \cos (\theta)
\end{array}\right]
$$

Using the pinhole camera model, one can then calculate positions on the image plane.

$$
\begin{gather*}
{\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{f}{\mathbf{d}_{z}}\left[\begin{array}{l}
\mathbf{d}_{x} \\
\mathbf{d}_{y}
\end{array}\right]=\frac{f}{\sin (\phi) \sin (\theta)+\cos (\phi) \cos (\lambda) \cos (\theta)}\left[\begin{array}{c}
\sin (\lambda) \cos (\phi) \\
\sin (\phi) \cos (\theta)-\cos (\phi) \cos (\lambda) \sin (\theta)
\end{array}\right]} \tag{4}\\
\frac{x}{f}=\frac{\sin (\lambda) \cos (\phi)}{\sin (\phi) \sin (\theta)+\cos (\phi) \cos (\lambda) \cos (\theta)} \tag{5}\\
\frac{y}{f}=\frac{\sin (\phi) \cos (\theta)-\cos (\phi) \cos (\lambda) \sin (\theta)}{\sin (\phi) \sin (\theta)+\cos (\phi) \cos (\lambda) \cos (\theta)} \tag{6}
\end{gather*}
$$

Solving the system of (5) and (6) for λ and ϕ and adding the longitudinal offset, one is able to find a point's position on the unit sphere from its position on the image plane.

$$
\begin{gather*}
\lambda=\tan ^{-1}\left(\frac{x}{\sqrt{x^{2}+(f \cos (\theta)-y \sin (\theta))^{2}}}, \frac{f \cos (\theta)-y \sin (\theta)}{\sqrt{x^{2}+(f \cos (\theta)-y \sin (\theta))^{2}}}\right)+\psi \tag{7}\\
\phi=\tan ^{-1}\left(\frac{y \cos (\theta)+f \sin (\theta)}{\sqrt{x^{2}+(f \cos (\theta)-y \sin (\theta))^{2}}}\right) \tag{8}
\end{gather*}
$$

Once a point's position on the unit sphere is known, it is trivial to find its position on an equirectangular projection.

$$
\begin{align*}
p_{x} & =\frac{\lambda}{\pi} \tag{9}\\
p_{y} & =\frac{\phi}{\frac{\pi}{2}} \tag{10}
\end{align*}
$$

[^0]
[^0]: ${ }^{1}$ Note that this is a left-handed coordinate system.

