Browse Source

add library via platformio.ini + use stock DS18B20 lib + check T° only on main screen

main
David 3 years ago
parent
commit
649d7af5c9
31 changed files with 36 additions and 2956 deletions
  1. +4
    -2
      MK3_Firmware/include/App.h
  2. +3
    -6
      MK3_Firmware/include/Tasks/TaskThermometer.h
  3. +0
    -16
      MK3_Firmware/lib/DallasTemperature_Modified/.gitignore
  4. +0
    -69
      MK3_Firmware/lib/DallasTemperature_Modified/.library.json
  5. +0
    -940
      MK3_Firmware/lib/DallasTemperature_Modified/DallasTemperature.cpp
  6. +0
    -274
      MK3_Firmware/lib/DallasTemperature_Modified/DallasTemperature.h
  7. +0
    -72
      MK3_Firmware/lib/DallasTemperature_Modified/README.md
  8. +0
    -162
      MK3_Firmware/lib/DallasTemperature_Modified/examples/Alarm/Alarm.pde
  9. +0
    -144
      MK3_Firmware/lib/DallasTemperature_Modified/examples/AlarmHandler/AlarmHandler.pde
  10. +0
    -35
      MK3_Firmware/lib/DallasTemperature_Modified/examples/ExternalPullup/ExternalPullup.ino
  11. +0
    -43
      MK3_Firmware/lib/DallasTemperature_Modified/examples/Multibus_simple/Multibus_simple.ino
  12. +0
    -148
      MK3_Firmware/lib/DallasTemperature_Modified/examples/Multiple/Multiple.pde
  13. +0
    -47
      MK3_Firmware/lib/DallasTemperature_Modified/examples/SetUserData/SetUserData.ino
  14. +0
    -51
      MK3_Firmware/lib/DallasTemperature_Modified/examples/Simple/Simple.pde
  15. +0
    -121
      MK3_Firmware/lib/DallasTemperature_Modified/examples/Single/Single.pde
  16. +0
    -129
      MK3_Firmware/lib/DallasTemperature_Modified/examples/Tester/Tester.pde
  17. +0
    -45
      MK3_Firmware/lib/DallasTemperature_Modified/examples/TwoPin_DS18B20/TwoPin_DS18B20.ino
  18. +0
    -115
      MK3_Firmware/lib/DallasTemperature_Modified/examples/UserDataDemo/UserDataDemo.ino
  19. +0
    -107
      MK3_Firmware/lib/DallasTemperature_Modified/examples/UserDataWriteBatch/UserDataWriteBatch.ino
  20. +0
    -66
      MK3_Firmware/lib/DallasTemperature_Modified/examples/WaitForConversion/WaitForConversion.pde
  21. +0
    -80
      MK3_Firmware/lib/DallasTemperature_Modified/examples/WaitForConversion2/WaitForConversion2.pde
  22. +0
    -67
      MK3_Firmware/lib/DallasTemperature_Modified/examples/oneWireSearch/oneWireSearch.ino
  23. +0
    -92
      MK3_Firmware/lib/DallasTemperature_Modified/examples/readPowerSupply/readPowerSupply.ino
  24. +0
    -54
      MK3_Firmware/lib/DallasTemperature_Modified/keywords.txt
  25. +0
    -40
      MK3_Firmware/lib/DallasTemperature_Modified/library.json
  26. +0
    -10
      MK3_Firmware/lib/DallasTemperature_Modified/library.properties
  27. +2
    -1
      MK3_Firmware/platformio.ini
  28. +5
    -2
      MK3_Firmware/src/App.cpp
  29. +2
    -2
      MK3_Firmware/src/Scenes/SceneMainMenu.cpp
  30. +0
    -2
      MK3_Firmware/src/Scenes/ScenePumpUse.cpp
  31. +20
    -14
      MK3_Firmware/src/Tasks/TaskThermometer.cpp

+ 4
- 2
MK3_Firmware/include/App.h View File

@@ -2,6 +2,7 @@
#define APP_H

#include <Arduino.h>
#include <Spirulerie.h>

#include "DataTypes.h"
#include "IODefinitions.h"
@@ -41,7 +42,7 @@

// Defines
#define MAX_PERCENTAGE_LIGHT 35 // do not go above this value or the LED will fail (burn, melt plastic etc...)
#define MAX_PERCENTAGE_HEATER 65 // So it doesn't draw too much current
#define MAX_PERCENTAGE_HEATER 75 // So it doesn't draw too much current
#define SECONDS_TO_SCREENSAVER 45 // only if screensaver is enabled in settings

// Main container class for program
@@ -58,6 +59,7 @@ class Application

// RTOS Queues
QueueHandle_t temperatureQueue;
QueueHandle_t TSensorActiveQueue;
QueueHandle_t PWMActionsQueue;
QueueHandle_t inputQueue;
QueueHandle_t audioQueue;
@@ -73,7 +75,7 @@ class Application
bool lightNominal = true;
bool heatNominal = true;
bool pumpNominal = true;
bool canGoToScreenSaver = true;
bool isOnMainMenu = true;

bool modeNeedsRefresh = true;
ModeParameters parameters;


+ 3
- 6
MK3_Firmware/include/Tasks/TaskThermometer.h View File

@@ -2,12 +2,11 @@
#define THERMOMETER_H

#include <Arduino.h>
#include <OneWire.h>
#include <DallasTemperature.h>
#include <Spirulerie.h>

#include "App.h"

#define READING_DELAY 10000 //30000
#define READING_DELAY 3000 //30000

// Global Variables
class Thermometer
@@ -22,12 +21,10 @@ class Thermometer
Thermometer();
bool StartDevice();
float GetTemperature();

};

// Functions
TaskHandle_t InitThermometer(); // entry point
void ThermometerTask(void *parameter); // RTOS task loop

void ThermometerTask(void *parameter); // RTOS task loop

#endif

+ 0
- 16
MK3_Firmware/lib/DallasTemperature_Modified/.gitignore View File

@@ -1,16 +0,0 @@
.idea
classes
target
out
build
*.iml
*.ipr
*.iws
*.log
*.war
.idea
.project
.classpath
.settings
.gradle
.vscode

+ 0
- 69
MK3_Firmware/lib/DallasTemperature_Modified/.library.json View File

@@ -1,69 +0,0 @@
{
"name": "DallasTemperature",
"repository": {
"url": "https://github.com/milesburton/Arduino-Temperature-Control-Library.git",
"type": "git"
},
"platforms": [
"atmelavr",
"atmelmegaavr",
"atmelsam",
"espressif32",
"espressif8266",
"gd32v",
"infineonxmc",
"intel_arc32",
"kendryte210",
"microchippic32",
"nordicnrf51",
"nordicnrf52",
"ststm32",
"ststm8",
"teensy",
"timsp430"
],
"frameworks": [
"arduino"
],
"dependencies": {
"frameworks": "arduino",
"name": "OneWire",
"authors": "Paul Stoffregen"
},
"version": "3.8.1",
"authors": [
{
"maintainer": true,
"name": "Miles Burton",
"url": "http://www.milesburton.com",
"email": "miles@mnetcs.com"
},
{
"url": null,
"maintainer": false,
"email": "nuisance@casualhacker.net",
"name": "Tim Newsome"
},
{
"url": null,
"maintainer": false,
"email": "gfbarros@bappos.com",
"name": "Guil Barros"
},
{
"url": null,
"maintainer": false,
"email": "rob.tillaart@gmail.com",
"name": "Rob Tillaart"
}
],
"keywords": [
"bus",
"sensor",
"1-wire",
"onewire",
"temperature"
],
"id": 54,
"description": "Arduino Library for Dallas Temperature ICs (DS18B20, DS18S20, DS1822, DS1820)"
}

+ 0
- 940
MK3_Firmware/lib/DallasTemperature_Modified/DallasTemperature.cpp View File

@@ -1,940 +0,0 @@
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
#include "DallasTemperature.h"
#if ARDUINO >= 100
#include "Arduino.h"
#else
extern "C" {
#include "WConstants.h"
}
#endif
// OneWire commands
#define STARTCONVO 0x44 // Tells device to take a temperature reading and put it on the scratchpad
#define COPYSCRATCH 0x48 // Copy EEPROM
#define READSCRATCH 0xBE // Read EEPROM
#define WRITESCRATCH 0x4E // Write to EEPROM
#define RECALLSCRATCH 0xB8 // Reload from last known
#define READPOWERSUPPLY 0xB4 // Determine if device needs parasite power
#define ALARMSEARCH 0xEC // Query bus for devices with an alarm condition
// Scratchpad locations
#define TEMP_LSB 0
#define TEMP_MSB 1
#define HIGH_ALARM_TEMP 2
#define LOW_ALARM_TEMP 3
#define CONFIGURATION 4
#define INTERNAL_BYTE 5
#define COUNT_REMAIN 6
#define COUNT_PER_C 7
#define SCRATCHPAD_CRC 8
// Device resolution
#define TEMP_9_BIT 0x1F // 9 bit
#define TEMP_10_BIT 0x3F // 10 bit
#define TEMP_11_BIT 0x5F // 11 bit
#define TEMP_12_BIT 0x7F // 12 bit
#define NO_ALARM_HANDLER ((AlarmHandler *)0)
DallasTemperature::DallasTemperature()
{
#if REQUIRESALARMS
setAlarmHandler(NO_ALARM_HANDLER);
#endif
useExternalPullup = false;
}
DallasTemperature::DallasTemperature(OneWire* _oneWire)
{
setOneWire(_oneWire);
#if REQUIRESALARMS
setAlarmHandler(NO_ALARM_HANDLER);
#endif
useExternalPullup = false;
}
bool DallasTemperature::validFamily(const uint8_t* deviceAddress) {
switch (deviceAddress[0]) {
case DS18S20MODEL:
case DS18B20MODEL:
case DS1822MODEL:
case DS1825MODEL:
case DS28EA00MODEL:
return true;
default:
return false;
}
}
/*
* Constructs DallasTemperature with strong pull-up turned on. Strong pull-up is mandated in DS18B20 datasheet for parasitic
* power (2 wires) setup. (https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf, p. 7, section 'Powering the DS18B20').
*/
DallasTemperature::DallasTemperature(OneWire* _oneWire, uint8_t _pullupPin) : DallasTemperature(_oneWire){
setPullupPin(_pullupPin);
}
void DallasTemperature::setPullupPin(uint8_t _pullupPin) {
useExternalPullup = true;
pullupPin = _pullupPin;
pinMode(pullupPin, OUTPUT);
deactivateExternalPullup();
}
void DallasTemperature::setOneWire(OneWire* _oneWire) {
_wire = _oneWire;
devices = 0;
ds18Count = 0;
parasite = false;
bitResolution = 9;
waitForConversion = true;
checkForConversion = true;
}
// initialise the bus
void DallasTemperature::begin(void) {
DeviceAddress deviceAddress;
_wire->reset_search();
devices = 0; // Reset the number of devices when we enumerate wire devices
ds18Count = 0; // Reset number of DS18xxx Family devices
while (_wire->search(deviceAddress)) {
if (validAddress(deviceAddress)) {
if (!parasite && readPowerSupply(deviceAddress))
parasite = true;
bitResolution = max(bitResolution, getResolution(deviceAddress));
devices++;
if (validFamily(deviceAddress)) {
ds18Count++;
}
}
}
}
// returns the number of devices found on the bus
uint8_t DallasTemperature::getDeviceCount(void) {
return devices;
}
uint8_t DallasTemperature::getDS18Count(void) {
return ds18Count;
}
// returns true if address is valid
bool DallasTemperature::validAddress(const uint8_t* deviceAddress) {
return (_wire->crc8(deviceAddress, 7) == deviceAddress[7]);
}
// finds an address at a given index on the bus
// returns true if the device was found
bool DallasTemperature::getAddress(uint8_t* deviceAddress, uint8_t index) {
uint8_t depth = 0;
_wire->reset_search();
while (depth <= index && _wire->search(deviceAddress)) {
if (depth == index && validAddress(deviceAddress))
return true;
depth++;
}
return false;
}
// attempt to determine if the device at the given address is connected to the bus
bool DallasTemperature::isConnected(const uint8_t* deviceAddress) {
ScratchPad scratchPad;
return isConnected(deviceAddress, scratchPad);
}
// attempt to determine if the device at the given address is connected to the bus
// also allows for updating the read scratchpad
bool DallasTemperature::isConnected(const uint8_t* deviceAddress,
uint8_t* scratchPad) {
bool b = readScratchPad(deviceAddress, scratchPad);
return b && !isAllZeros(scratchPad) && (_wire->crc8(scratchPad, 8) == scratchPad[SCRATCHPAD_CRC]);
}
bool DallasTemperature::readScratchPad(const uint8_t* deviceAddress,
uint8_t* scratchPad) {
// send the reset command and fail fast
int b = _wire->reset();
if (b == 0)
return false;
_wire->select(deviceAddress);
_wire->write(READSCRATCH);
// Read all registers in a simple loop
// byte 0: temperature LSB
// byte 1: temperature MSB
// byte 2: high alarm temp
// byte 3: low alarm temp
// byte 4: DS18S20: store for crc
// DS18B20 & DS1822: configuration register
// byte 5: internal use & crc
// byte 6: DS18S20: COUNT_REMAIN
// DS18B20 & DS1822: store for crc
// byte 7: DS18S20: COUNT_PER_C
// DS18B20 & DS1822: store for crc
// byte 8: SCRATCHPAD_CRC
for (uint8_t i = 0; i < 9; i++) {
scratchPad[i] = _wire->read();
}
b = _wire->reset();
return (b == 1);
}
void DallasTemperature::writeScratchPad(const uint8_t* deviceAddress,
const uint8_t* scratchPad) {
_wire->reset();
_wire->select(deviceAddress);
_wire->write(WRITESCRATCH);
_wire->write(scratchPad[HIGH_ALARM_TEMP]); // high alarm temp
_wire->write(scratchPad[LOW_ALARM_TEMP]); // low alarm temp
// DS1820 and DS18S20 have no configuration register
if (deviceAddress[0] != DS18S20MODEL)
_wire->write(scratchPad[CONFIGURATION]);
_wire->reset();
// save the newly written values to eeprom
_wire->select(deviceAddress);
_wire->write(COPYSCRATCH, parasite);
delay(20); // <--- added 20ms delay to allow 10ms long EEPROM write operation (as specified by datasheet)
if (parasite) {
activateExternalPullup();
delay(10); // 10ms delay
deactivateExternalPullup();
}
_wire->reset();
}
// returns true if parasite mode is used (2 wire)
// returns false if normal mode is used (3 wire)
// if no address is given (or nullptr) it checks if any device on the bus
// uses parasite mode.
// See issue #145
bool DallasTemperature::readPowerSupply(const uint8_t* deviceAddress)
{
bool parasiteMode = false;
_wire->reset();
if (deviceAddress == nullptr)
_wire->skip();
else
_wire->select(deviceAddress);
_wire->write(READPOWERSUPPLY);
if (_wire->read_bit() == 0)
parasiteMode = true;
_wire->reset();
return parasiteMode;
}
// set resolution of all devices to 9, 10, 11, or 12 bits
// if new resolution is out of range, it is constrained.
void DallasTemperature::setResolution(uint8_t newResolution) {
bitResolution = constrain(newResolution, 9, 12);
DeviceAddress deviceAddress;
for (int i = 0; i < devices; i++) {
getAddress(deviceAddress, i);
setResolution(deviceAddress, bitResolution, true);
}
}
// set resolution of a device to 9, 10, 11, or 12 bits
// if new resolution is out of range, 9 bits is used.
bool DallasTemperature::setResolution(const uint8_t* deviceAddress,
uint8_t newResolution, bool skipGlobalBitResolutionCalculation) {
// ensure same behavior as setResolution(uint8_t newResolution)
newResolution = constrain(newResolution, 9, 12);
// return when stored value == new value
if (getResolution(deviceAddress) == newResolution)
return true;
ScratchPad scratchPad;
if (isConnected(deviceAddress, scratchPad)) {
// DS1820 and DS18S20 have no resolution configuration register
if (deviceAddress[0] != DS18S20MODEL) {
switch (newResolution) {
case 12:
scratchPad[CONFIGURATION] = TEMP_12_BIT;
break;
case 11:
scratchPad[CONFIGURATION] = TEMP_11_BIT;
break;
case 10:
scratchPad[CONFIGURATION] = TEMP_10_BIT;
break;
case 9:
default:
scratchPad[CONFIGURATION] = TEMP_9_BIT;
break;
}
writeScratchPad(deviceAddress, scratchPad);
// without calculation we can always set it to max
bitResolution = max(bitResolution, newResolution);
if (!skipGlobalBitResolutionCalculation
&& (bitResolution > newResolution)) {
bitResolution = newResolution;
DeviceAddress deviceAddr;
for (int i = 0; i < devices; i++) {
getAddress(deviceAddr, i);
bitResolution = max(bitResolution,
getResolution(deviceAddr));
}
}
}
return true; // new value set
}
return false;
}
// returns the global resolution
uint8_t DallasTemperature::getResolution() {
return bitResolution;
}
// returns the current resolution of the device, 9-12
// returns 0 if device not found
uint8_t DallasTemperature::getResolution(const uint8_t* deviceAddress) {
// DS1820 and DS18S20 have no resolution configuration register
if (deviceAddress[0] == DS18S20MODEL)
return 12;
ScratchPad scratchPad;
if (isConnected(deviceAddress, scratchPad)) {
switch (scratchPad[CONFIGURATION]) {
case TEMP_12_BIT:
return 12;
case TEMP_11_BIT:
return 11;
case TEMP_10_BIT:
return 10;
case TEMP_9_BIT:
return 9;
}
}
return 0;
}
// sets the value of the waitForConversion flag
// TRUE : function requestTemperature() etc returns when conversion is ready
// FALSE: function requestTemperature() etc returns immediately (USE WITH CARE!!)
// (1) programmer has to check if the needed delay has passed
// (2) but the application can do meaningful things in that time
void DallasTemperature::setWaitForConversion(bool flag) {
waitForConversion = flag;
}
// gets the value of the waitForConversion flag
bool DallasTemperature::getWaitForConversion() {
return waitForConversion;
}
// sets the value of the checkForConversion flag
// TRUE : function requestTemperature() etc will 'listen' to an IC to determine whether a conversion is complete
// FALSE: function requestTemperature() etc will wait a set time (worst case scenario) for a conversion to complete
void DallasTemperature::setCheckForConversion(bool flag) {
checkForConversion = flag;
}
// gets the value of the waitForConversion flag
bool DallasTemperature::getCheckForConversion() {
return checkForConversion;
}
bool DallasTemperature::isConversionComplete() {
uint8_t b = _wire->read_bit();
return (b == 1);
}
// sends command for all devices on the bus to perform a temperature conversion
void DallasTemperature::requestTemperatures() {
_wire->reset();
_wire->skip();
_wire->write(STARTCONVO, parasite);
// ASYNC mode?
if (!waitForConversion)
return;
blockTillConversionComplete(bitResolution);
}
// sends command for one device to perform a temperature by address
// returns FALSE if device is disconnected
// returns TRUE otherwise
bool DallasTemperature::requestTemperaturesByAddress(
const uint8_t* deviceAddress) {
uint8_t bitResolution = getResolution(deviceAddress);
if (bitResolution == 0) {
return false; //Device disconnected
}
_wire->reset(); // Commented by La Spirulerie
_wire->select(deviceAddress);
_wire->write(STARTCONVO, parasite);
// CODE SPIRULERIE
return (true);
// ORIGINAL CODE BELOW
// ASYNC mode?
if (!waitForConversion)
return true;
blockTillConversionComplete(bitResolution);
return true;
}
// Continue to check if the IC has responded with a temperature
void DallasTemperature::blockTillConversionComplete(uint8_t bitResolution) {
unsigned long delms = millisToWaitForConversion(bitResolution);
if (checkForConversion && !parasite) {
unsigned long start = millis();
while (!isConversionComplete() && (millis() - start < delms))
yield();
} else {
activateExternalPullup();
delay(delms);
deactivateExternalPullup();
}
}
// returns number of milliseconds to wait till conversion is complete (based on IC datasheet)
int16_t DallasTemperature::millisToWaitForConversion(uint8_t bitResolution) {
switch (bitResolution) {
case 9:
return 94;
case 10:
return 188;
case 11:
return 375;
default:
return 750;
}
}
void DallasTemperature::activateExternalPullup() {
if(useExternalPullup)
digitalWrite(pullupPin, LOW);
}
void DallasTemperature::deactivateExternalPullup() {
if(useExternalPullup)
digitalWrite(pullupPin, HIGH);
}
// sends command for one device to perform a temp conversion by index
bool DallasTemperature::requestTemperaturesByIndex(uint8_t deviceIndex) {
DeviceAddress deviceAddress;
getAddress(deviceAddress, deviceIndex);
return requestTemperaturesByAddress(deviceAddress);
}
// Fetch temperature for device index
float DallasTemperature::getTempCByIndex(uint8_t deviceIndex) {
DeviceAddress deviceAddress;
if (!getAddress(deviceAddress, deviceIndex)) {
return DEVICE_DISCONNECTED_C;
}
return getTempC((uint8_t*) deviceAddress);
}
// Fetch temperature for device index
float DallasTemperature::getTempFByIndex(uint8_t deviceIndex) {
DeviceAddress deviceAddress;
if (!getAddress(deviceAddress, deviceIndex)) {
return DEVICE_DISCONNECTED_F;
}
return getTempF((uint8_t*) deviceAddress);
}
// reads scratchpad and returns fixed-point temperature, scaling factor 2^-7
int16_t DallasTemperature::calculateTemperature(const uint8_t* deviceAddress,
uint8_t* scratchPad) {
int16_t fpTemperature = (((int16_t) scratchPad[TEMP_MSB]) << 11)
| (((int16_t) scratchPad[TEMP_LSB]) << 3);
/*
DS1820 and DS18S20 have a 9-bit temperature register.
Resolutions greater than 9-bit can be calculated using the data from
the temperature, and COUNT REMAIN and COUNT PER °C registers in the
scratchpad. The resolution of the calculation depends on the model.
While the COUNT PER °C register is hard-wired to 16 (10h) in a
DS18S20, it changes with temperature in DS1820.
After reading the scratchpad, the TEMP_READ value is obtained by
truncating the 0.5°C bit (bit 0) from the temperature data. The
extended resolution temperature can then be calculated using the
following equation:
COUNT_PER_C - COUNT_REMAIN
TEMPERATURE = TEMP_READ - 0.25 + --------------------------
COUNT_PER_C
Hagai Shatz simplified this to integer arithmetic for a 12 bits
value for a DS18S20, and James Cameron added legacy DS1820 support.
See - http://myarduinotoy.blogspot.co.uk/2013/02/12bit-result-from-ds18s20.html
*/
if ((deviceAddress[0] == DS18S20MODEL) && (scratchPad[COUNT_PER_C] != 0)) {
fpTemperature = ((fpTemperature & 0xfff0) << 3) - 32
+ (((scratchPad[COUNT_PER_C] - scratchPad[COUNT_REMAIN]) << 7)
/ scratchPad[COUNT_PER_C]);
}
return fpTemperature;
}
// returns temperature in 1/128 degrees C or DEVICE_DISCONNECTED_RAW if the
// device's scratch pad cannot be read successfully.
// the numeric value of DEVICE_DISCONNECTED_RAW is defined in
// DallasTemperature.h. It is a large negative number outside the
// operating range of the device
int16_t DallasTemperature::getTemp(const uint8_t* deviceAddress) {
ScratchPad scratchPad;
if (isConnected(deviceAddress, scratchPad))
return calculateTemperature(deviceAddress, scratchPad);
return DEVICE_DISCONNECTED_RAW;
}
// returns temperature in degrees C or DEVICE_DISCONNECTED_C if the
// device's scratch pad cannot be read successfully.
// the numeric value of DEVICE_DISCONNECTED_C is defined in
// DallasTemperature.h. It is a large negative number outside the
// operating range of the device
float DallasTemperature::getTempC(const uint8_t* deviceAddress) {
return rawToCelsius(getTemp(deviceAddress));
}
// returns temperature in degrees F or DEVICE_DISCONNECTED_F if the
// device's scratch pad cannot be read successfully.
// the numeric value of DEVICE_DISCONNECTED_F is defined in
// DallasTemperature.h. It is a large negative number outside the
// operating range of the device
float DallasTemperature::getTempF(const uint8_t* deviceAddress) {
return rawToFahrenheit(getTemp(deviceAddress));
}
// returns true if the bus requires parasite power
bool DallasTemperature::isParasitePowerMode(void) {
return parasite;
}
// IF alarm is not used one can store a 16 bit int of userdata in the alarm
// registers. E.g. an ID of the sensor.
// See github issue #29
// note if device is not connected it will fail writing the data.
void DallasTemperature::setUserData(const uint8_t* deviceAddress,
int16_t data) {
// return when stored value == new value
if (getUserData(deviceAddress) == data)
return;
ScratchPad scratchPad;
if (isConnected(deviceAddress, scratchPad)) {
scratchPad[HIGH_ALARM_TEMP] = data >> 8;
scratchPad[LOW_ALARM_TEMP] = data & 255;
writeScratchPad(deviceAddress, scratchPad);
}
}
int16_t DallasTemperature::getUserData(const uint8_t* deviceAddress) {
int16_t data = 0;
ScratchPad scratchPad;
if (isConnected(deviceAddress, scratchPad)) {
data = scratchPad[HIGH_ALARM_TEMP] << 8;
data += scratchPad[LOW_ALARM_TEMP];
}
return data;
}
// note If address cannot be found no error will be reported.
int16_t DallasTemperature::getUserDataByIndex(uint8_t deviceIndex) {
DeviceAddress deviceAddress;
getAddress(deviceAddress, deviceIndex);
return getUserData((uint8_t*) deviceAddress);
}
void DallasTemperature::setUserDataByIndex(uint8_t deviceIndex, int16_t data) {
DeviceAddress deviceAddress;
getAddress(deviceAddress, deviceIndex);
setUserData((uint8_t*) deviceAddress, data);
}
// Convert float Celsius to Fahrenheit
float DallasTemperature::toFahrenheit(float celsius) {
return (celsius * 1.8) + 32;
}
// Convert float Fahrenheit to Celsius
float DallasTemperature::toCelsius(float fahrenheit) {
return (fahrenheit - 32) * 0.555555556;
}
// convert from raw to Celsius
float DallasTemperature::rawToCelsius(int16_t raw) {
if (raw <= DEVICE_DISCONNECTED_RAW)
return DEVICE_DISCONNECTED_C;
// C = RAW/128
return (float) raw * 0.0078125;
}
// convert from raw to Fahrenheit
float DallasTemperature::rawToFahrenheit(int16_t raw) {
if (raw <= DEVICE_DISCONNECTED_RAW)
return DEVICE_DISCONNECTED_F;
// C = RAW/128
// F = (C*1.8)+32 = (RAW/128*1.8)+32 = (RAW*0.0140625)+32
return ((float) raw * 0.0140625) + 32;
}
// Returns true if all bytes of scratchPad are '\0'
bool DallasTemperature::isAllZeros(const uint8_t * const scratchPad, const size_t length) {
for (size_t i = 0; i < length; i++) {
if (scratchPad[i] != 0) {
return false;
}
}
return true;
}
#if REQUIRESALARMS
/*
ALARMS:
TH and TL Register Format
BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
S 2^6 2^5 2^4 2^3 2^2 2^1 2^0
Only bits 11 through 4 of the temperature register are used
in the TH and TL comparison since TH and TL are 8-bit
registers. If the measured temperature is lower than or equal
to TL or higher than or equal to TH, an alarm condition exists
and an alarm flag is set inside the DS18B20. This flag is
updated after every temperature measurement; therefore, if the
alarm condition goes away, the flag will be turned off after
the next temperature conversion.
*/
// sets the high alarm temperature for a device in degrees Celsius
// accepts a float, but the alarm resolution will ignore anything
// after a decimal point. valid range is -55C - 125C
void DallasTemperature::setHighAlarmTemp(const uint8_t* deviceAddress,
int8_t celsius) {
// return when stored value == new value
if (getHighAlarmTemp(deviceAddress) == celsius)
return;
// make sure the alarm temperature is within the device's range
if (celsius > 125)
celsius = 125;
else if (celsius < -55)
celsius = -55;
ScratchPad scratchPad;
if (isConnected(deviceAddress, scratchPad)) {
scratchPad[HIGH_ALARM_TEMP] = (uint8_t) celsius;
writeScratchPad(deviceAddress, scratchPad);
}
}
// sets the low alarm temperature for a device in degrees Celsius
// accepts a float, but the alarm resolution will ignore anything
// after a decimal point. valid range is -55C - 125C
void DallasTemperature::setLowAlarmTemp(const uint8_t* deviceAddress,
int8_t celsius) {
// return when stored value == new value
if (getLowAlarmTemp(deviceAddress) == celsius)
return;
// make sure the alarm temperature is within the device's range
if (celsius > 125)
celsius = 125;
else if (celsius < -55)
celsius = -55;
ScratchPad scratchPad;
if (isConnected(deviceAddress, scratchPad)) {
scratchPad[LOW_ALARM_TEMP] = (uint8_t) celsius;
writeScratchPad(deviceAddress, scratchPad);
}
}
// returns a int8_t with the current high alarm temperature or
// DEVICE_DISCONNECTED for an address
int8_t DallasTemperature::getHighAlarmTemp(const uint8_t* deviceAddress) {
ScratchPad scratchPad;
if (isConnected(deviceAddress, scratchPad))
return (int8_t) scratchPad[HIGH_ALARM_TEMP];
return DEVICE_DISCONNECTED_C;
}
// returns a int8_t with the current low alarm temperature or
// DEVICE_DISCONNECTED for an address
int8_t DallasTemperature::getLowAlarmTemp(const uint8_t* deviceAddress) {
ScratchPad scratchPad;
if (isConnected(deviceAddress, scratchPad))
return (int8_t) scratchPad[LOW_ALARM_TEMP];
return DEVICE_DISCONNECTED_C;
}
// resets internal variables used for the alarm search
void DallasTemperature::resetAlarmSearch() {
alarmSearchJunction = -1;
alarmSearchExhausted = 0;
for (uint8_t i = 0; i < 7; i++) {
alarmSearchAddress[i] = 0;
}
}
// This is a modified version of the OneWire::search method.
//
// Also added the OneWire search fix documented here:
// http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295
//
// Perform an alarm search. If this function returns a '1' then it has
// enumerated the next device and you may retrieve the ROM from the
// OneWire::address variable. If there are no devices, no further
// devices, or something horrible happens in the middle of the
// enumeration then a 0 is returned. If a new device is found then
// its address is copied to newAddr. Use
// DallasTemperature::resetAlarmSearch() to start over.
bool DallasTemperature::alarmSearch(uint8_t* newAddr) {
uint8_t i;
int8_t lastJunction = -1;
uint8_t done = 1;
if (alarmSearchExhausted)
return false;
if (!_wire->reset())
return false;
// send the alarm search command
_wire->write(0xEC, 0);
for (i = 0; i < 64; i++) {
uint8_t a = _wire->read_bit();
uint8_t nota = _wire->read_bit();
uint8_t ibyte = i / 8;
uint8_t ibit = 1 << (i & 7);
// I don't think this should happen, this means nothing responded, but maybe if
// something vanishes during the search it will come up.
if (a && nota)
return false;
if (!a && !nota) {
if (i == alarmSearchJunction) {
// this is our time to decide differently, we went zero last time, go one.
a = 1;
alarmSearchJunction = lastJunction;
} else if (i < alarmSearchJunction) {
// take whatever we took last time, look in address
if (alarmSearchAddress[ibyte] & ibit) {
a = 1;
} else {
// Only 0s count as pending junctions, we've already exhausted the 0 side of 1s
a = 0;
done = 0;
lastJunction = i;
}
} else {
// we are blazing new tree, take the 0
a = 0;
alarmSearchJunction = i;
done = 0;
}
// OneWire search fix
// See: http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295
}
if (a)
alarmSearchAddress[ibyte] |= ibit;
else
alarmSearchAddress[ibyte] &= ~ibit;
_wire->write_bit(a);
}
if (done)
alarmSearchExhausted = 1;
for (i = 0; i < 8; i++)
newAddr[i] = alarmSearchAddress[i];
return true;
}
// returns true if device address might have an alarm condition
// (only an alarm search can verify this)
bool DallasTemperature::hasAlarm(const uint8_t* deviceAddress) {
ScratchPad scratchPad;
if (isConnected(deviceAddress, scratchPad)) {
int8_t temp = calculateTemperature(deviceAddress, scratchPad) >> 7;
// check low alarm
if (temp <= (int8_t) scratchPad[LOW_ALARM_TEMP])
return true;
// check high alarm
if (temp >= (int8_t) scratchPad[HIGH_ALARM_TEMP])
return true;
}
// no alarm
return false;
}
// returns true if any device is reporting an alarm condition on the bus
bool DallasTemperature::hasAlarm(void) {
DeviceAddress deviceAddress;
resetAlarmSearch();
return alarmSearch(deviceAddress);
}
// runs the alarm handler for all devices returned by alarmSearch()
// unless there no _AlarmHandler exist.
void DallasTemperature::processAlarms(void) {
if (!hasAlarmHandler())
{
return;
}
resetAlarmSearch();
DeviceAddress alarmAddr;
while (alarmSearch(alarmAddr)) {
if (validAddress(alarmAddr)) {
_AlarmHandler(alarmAddr);
}
}
}
// sets the alarm handler
void DallasTemperature::setAlarmHandler(const AlarmHandler *handler) {
_AlarmHandler = handler;
}
// checks if AlarmHandler has been set.
bool DallasTemperature::hasAlarmHandler()
{
return _AlarmHandler != NO_ALARM_HANDLER;
}
#endif
#if REQUIRESNEW
// MnetCS - Allocates memory for DallasTemperature. Allows us to instance a new object
void* DallasTemperature::operator new(unsigned int size) { // Implicit NSS obj size
void * p;// void pointer
p = malloc(size);// Allocate memory
memset((DallasTemperature*)p,0,size);// Initialise memory
//!!! CANT EXPLICITLY CALL CONSTRUCTOR - workaround by using an init() methodR - workaround by using an init() method
return (DallasTemperature*) p;// Cast blank region to NSS pointer
}
// MnetCS 2009 - Free the memory used by this instance
void DallasTemperature::operator delete(void* p) {
DallasTemperature* pNss = (DallasTemperature*) p; // Cast to NSS pointer
pNss->~DallasTemperature();// Destruct the object
free(p);// Free the memory
}
#endif

+ 0
- 274
MK3_Firmware/lib/DallasTemperature_Modified/DallasTemperature.h View File

@@ -1,274 +0,0 @@
#ifndef DallasTemperature_h
#define DallasTemperature_h
#define DALLASTEMPLIBVERSION "3.8.1" // To be deprecated -> TODO remove in 4.0.0
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// set to true to include code for new and delete operators
#ifndef REQUIRESNEW
#define REQUIRESNEW false
#endif
// set to true to include code implementing alarm search functions
#ifndef REQUIRESALARMS
#define REQUIRESALARMS true
#endif
#include <inttypes.h>
#ifdef __STM32F1__
#include <OneWireSTM.h>
#else
#include <OneWire.h>
#endif
// Model IDs
#define DS18S20MODEL 0x10 // also DS1820
#define DS18B20MODEL 0x28
#define DS1822MODEL 0x22
#define DS1825MODEL 0x3B
#define DS28EA00MODEL 0x42
// Error Codes
#define DEVICE_DISCONNECTED_C -127
#define DEVICE_DISCONNECTED_F -196.6
#define DEVICE_DISCONNECTED_RAW -7040
// For readPowerSupply on oneWire bus
#ifndef nullptr
#define nullptr NULL
#endif
typedef uint8_t DeviceAddress[8];
class DallasTemperature {
public:
DallasTemperature();
DallasTemperature(OneWire*);
DallasTemperature(OneWire*, uint8_t);
void setOneWire(OneWire*);
void setPullupPin(uint8_t);
// initialise bus
void begin(void);
// returns the number of devices found on the bus
uint8_t getDeviceCount(void);
// returns the number of DS18xxx Family devices on bus
uint8_t getDS18Count(void);
// returns true if address is valid
bool validAddress(const uint8_t*);
// returns true if address is of the family of sensors the lib supports.
bool validFamily(const uint8_t* deviceAddress);
// finds an address at a given index on the bus
bool getAddress(uint8_t*, uint8_t);
// attempt to determine if the device at the given address is connected to the bus
bool isConnected(const uint8_t*);
// attempt to determine if the device at the given address is connected to the bus
// also allows for updating the read scratchpad
bool isConnected(const uint8_t*, uint8_t*);
// read device's scratchpad
bool readScratchPad(const uint8_t*, uint8_t*);
// write device's scratchpad
void writeScratchPad(const uint8_t*, const uint8_t*);
// read device's power requirements
bool readPowerSupply(const uint8_t* deviceAddress = nullptr);
// get global resolution
uint8_t getResolution();
// set global resolution to 9, 10, 11, or 12 bits
void setResolution(uint8_t);
// returns the device resolution: 9, 10, 11, or 12 bits
uint8_t getResolution(const uint8_t*);
// set resolution of a device to 9, 10, 11, or 12 bits
bool setResolution(const uint8_t*, uint8_t,
bool skipGlobalBitResolutionCalculation = false);
// sets/gets the waitForConversion flag
void setWaitForConversion(bool);
bool getWaitForConversion(void);
// sets/gets the checkForConversion flag
void setCheckForConversion(bool);
bool getCheckForConversion(void);
// sends command for all devices on the bus to perform a temperature conversion
void requestTemperatures(void);
// sends command for one device to perform a temperature conversion by address
bool requestTemperaturesByAddress(const uint8_t*);
// sends command for one device to perform a temperature conversion by index
bool requestTemperaturesByIndex(uint8_t);
// returns temperature raw value (12 bit integer of 1/128 degrees C)
int16_t getTemp(const uint8_t*);
// returns temperature in degrees C
float getTempC(const uint8_t*);
// returns temperature in degrees F
float getTempF(const uint8_t*);
// Get temperature for device index (slow)
float getTempCByIndex(uint8_t);
// Get temperature for device index (slow)
float getTempFByIndex(uint8_t);
// returns true if the bus requires parasite power
bool isParasitePowerMode(void);
// Is a conversion complete on the wire? Only applies to the first sensor on the wire.
bool isConversionComplete(void);
int16_t millisToWaitForConversion(uint8_t);
#if REQUIRESALARMS
typedef void AlarmHandler(const uint8_t*);
// sets the high alarm temperature for a device
// accepts a int8_t. valid range is -55C - 125C
void setHighAlarmTemp(const uint8_t*, int8_t);
// sets the low alarm temperature for a device
// accepts a int8_t. valid range is -55C - 125C
void setLowAlarmTemp(const uint8_t*, int8_t);
// returns a int8_t with the current high alarm temperature for a device
// in the range -55C - 125C
int8_t getHighAlarmTemp(const uint8_t*);
// returns a int8_t with the current low alarm temperature for a device
// in the range -55C - 125C
int8_t getLowAlarmTemp(const uint8_t*);
// resets internal variables used for the alarm search
void resetAlarmSearch(void);
// search the wire for devices with active alarms
bool alarmSearch(uint8_t*);
// returns true if ia specific device has an alarm
bool hasAlarm(const uint8_t*);
// returns true if any device is reporting an alarm on the bus
bool hasAlarm(void);
// runs the alarm handler for all devices returned by alarmSearch()
void processAlarms(void);
// sets the alarm handler
void setAlarmHandler(const AlarmHandler *);
// returns true if an AlarmHandler has been set
bool hasAlarmHandler();
#endif
// if no alarm handler is used the two bytes can be used as user data
// example of such usage is an ID.
// note if device is not connected it will fail writing the data.
// note if address cannot be found no error will be reported.
// in short use carefully
void setUserData(const uint8_t*, int16_t);
void setUserDataByIndex(uint8_t, int16_t);
int16_t getUserData(const uint8_t*);
int16_t getUserDataByIndex(uint8_t);
// convert from Celsius to Fahrenheit
static float toFahrenheit(float);
// convert from Fahrenheit to Celsius
static float toCelsius(float);
// convert from raw to Celsius
static float rawToCelsius(int16_t);
// convert from raw to Fahrenheit
static float rawToFahrenheit(int16_t);
#if REQUIRESNEW
// initialize memory area
void* operator new (unsigned int);
// delete memory reference
void operator delete(void*);
#endif
private:
typedef uint8_t ScratchPad[9];
// parasite power on or off
bool parasite;
// external pullup
bool useExternalPullup;
uint8_t pullupPin;
// used to determine the delay amount needed to allow for the
// temperature conversion to take place
uint8_t bitResolution;
// used to requestTemperature with or without delay
bool waitForConversion;
// used to requestTemperature to dynamically check if a conversion is complete
bool checkForConversion;
// count of devices on the bus
uint8_t devices;
// count of DS18xxx Family devices on bus
uint8_t ds18Count;
// Take a pointer to one wire instance
OneWire* _wire;
// reads scratchpad and returns the raw temperature
int16_t calculateTemperature(const uint8_t*, uint8_t*);
void blockTillConversionComplete(uint8_t);
// Returns true if all bytes of scratchPad are '\0'
bool isAllZeros(const uint8_t* const scratchPad, const size_t length = 9);
// External pullup control
void activateExternalPullup(void);
void deactivateExternalPullup(void);
#if REQUIRESALARMS
// required for alarmSearch
uint8_t alarmSearchAddress[8];
int8_t alarmSearchJunction;
uint8_t alarmSearchExhausted;
// the alarm handler function pointer
AlarmHandler *_AlarmHandler;
#endif
};
#endif

+ 0
- 72
MK3_Firmware/lib/DallasTemperature_Modified/README.md View File

@@ -1,72 +0,0 @@
# Arduino Library for Maxim Temperature Integrated Circuits

## Usage

This library supports the following devices :


* DS18B20
* DS18S20 - Please note there appears to be an issue with this series.
* DS1822
* DS1820
* MAX31820


You will need a pull-up resistor of about 5 KOhm between the 1-Wire data line
and your 5V power. If you are using the DS18B20, ground pins 1 and 3. The
centre pin is the data line '1-wire'.

In case of temperature conversion problems (result is `-85`), strong pull-up setup may be necessary. See section
_Powering the DS18B20_ in
[DS18B20 datasheet](https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf) (page 7)
and use `DallasTemperature(OneWire*, uint8_t)` constructor.

We have included a "REQUIRESNEW" and "REQUIRESALARMS" definition. If you
want to slim down the code feel free to use either of these by including



#define REQUIRESNEW

or

#define REQUIRESALARMS


at the top of DallasTemperature.h

Finally, please include OneWire from Paul Stoffregen in the library manager before you begin.

## Credits

The OneWire code has been derived from
http://www.arduino.cc/playground/Learning/OneWire.
Miles Burton <miles@mnetcs.com> originally developed this library.
Tim Newsome <nuisance@casualhacker.net> added support for multiple sensors on
the same bus.
Guil Barros [gfbarros@bappos.com] added getTempByAddress (v3.5)
Note: these are implemented as getTempC(address) and getTempF(address)
Rob Tillaart [rob.tillaart@gmail.com] added async modus (v3.7.0)


## Website


You can find the latest version of the library at
https://www.milesburton.com/Dallas_Temperature_Control_Library

# License

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

+ 0
- 162
MK3_Firmware/lib/DallasTemperature_Modified/examples/Alarm/Alarm.pde View File

@@ -1,162 +0,0 @@
#include <OneWire.h>
#include <DallasTemperature.h>

// Data wire is plugged into port 2 on the Arduino
#define ONE_WIRE_BUS 2

// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs)
OneWire oneWire(ONE_WIRE_BUS);

// Pass our oneWire reference to Dallas Temperature.
DallasTemperature sensors(&oneWire);

// arrays to hold device addresses
DeviceAddress insideThermometer, outsideThermometer;

void setup(void)
{
// start serial port
Serial.begin(9600);
Serial.println("Dallas Temperature IC Control Library Demo");

// Start up the library
sensors.begin();
// locate devices on the bus
Serial.print("Found ");
Serial.print(sensors.getDeviceCount(), DEC);
Serial.println(" devices.");

// search for devices on the bus and assign based on an index.
if (!sensors.getAddress(insideThermometer, 0)) Serial.println("Unable to find address for Device 0");
if (!sensors.getAddress(outsideThermometer, 1)) Serial.println("Unable to find address for Device 1");

// show the addresses we found on the bus
Serial.print("Device 0 Address: ");
printAddress(insideThermometer);
Serial.println();

Serial.print("Device 0 Alarms: ");
printAlarms(insideThermometer);
Serial.println();
Serial.print("Device 1 Address: ");
printAddress(outsideThermometer);
Serial.println();

Serial.print("Device 1 Alarms: ");
printAlarms(outsideThermometer);
Serial.println();
Serial.println("Setting alarm temps...");

// alarm when temp is higher than 30C
sensors.setHighAlarmTemp(insideThermometer, 30);
// alarm when temp is lower than -10C
sensors.setLowAlarmTemp(insideThermometer, -10);
// alarm when temp is higher than 31C
sensors.setHighAlarmTemp(outsideThermometer, 31);
// alarn when temp is lower than 27C
sensors.setLowAlarmTemp(outsideThermometer, 27);
Serial.print("New Device 0 Alarms: ");
printAlarms(insideThermometer);
Serial.println();
Serial.print("New Device 1 Alarms: ");
printAlarms(outsideThermometer);
Serial.println();
}

// function to print a device address
void printAddress(DeviceAddress deviceAddress)
{
for (uint8_t i = 0; i < 8; i++)
{
if (deviceAddress[i] < 16) Serial.print("0");
Serial.print(deviceAddress[i], HEX);
}
}

// function to print the temperature for a device
void printTemperature(DeviceAddress deviceAddress)
{
float tempC = sensors.getTempC(deviceAddress);
Serial.print("Temp C: ");
Serial.print(tempC);
Serial.print(" Temp F: ");
Serial.print(DallasTemperature::toFahrenheit(tempC));
}

void printAlarms(uint8_t deviceAddress[])
{
char temp;
temp = sensors.getHighAlarmTemp(deviceAddress);
Serial.print("High Alarm: ");
Serial.print(temp, DEC);
Serial.print("C/");
Serial.print(DallasTemperature::toFahrenheit(temp));
Serial.print("F | Low Alarm: ");
temp = sensors.getLowAlarmTemp(deviceAddress);
Serial.print(temp, DEC);
Serial.print("C/");
Serial.print(DallasTemperature::toFahrenheit(temp));
Serial.print("F");
}

// main function to print information about a device
void printData(DeviceAddress deviceAddress)
{
Serial.print("Device Address: ");
printAddress(deviceAddress);
Serial.print(" ");
printTemperature(deviceAddress);
Serial.println();
}

void checkAlarm(DeviceAddress deviceAddress)
{
if (sensors.hasAlarm(deviceAddress))
{
Serial.print("ALARM: ");
printData(deviceAddress);
}
}

void loop(void)
{
// call sensors.requestTemperatures() to issue a global temperature
// request to all devices on the bus
Serial.print("Requesting temperatures...");
sensors.requestTemperatures();
Serial.println("DONE");

// Method 1:
// check each address individually for an alarm condition
checkAlarm(insideThermometer);
checkAlarm(outsideThermometer);
/*
// Alternate method:
// Search the bus and iterate through addresses of devices with alarms
// space for the alarm device's address
DeviceAddress alarmAddr;

Serial.println("Searching for alarms...");
// resetAlarmSearch() must be called before calling alarmSearch()
sensors.resetAlarmSearch();
// alarmSearch() returns 0 when there are no devices with alarms
while (sensors.alarmSearch(alarmAddr))
{
Serial.print("ALARM: ");
printData(alarmAddr);
}
*/

}

+ 0
- 144
MK3_Firmware/lib/DallasTemperature_Modified/examples/AlarmHandler/AlarmHandler.pde View File

@@ -1,144 +0,0 @@
#include <OneWire.h>
#include <DallasTemperature.h>

// Data wire is plugged into port 2 on the Arduino
#define ONE_WIRE_BUS 2

// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs)
OneWire oneWire(ONE_WIRE_BUS);

// Pass our oneWire reference to Dallas Temperature.
DallasTemperature sensors(&oneWire);

// arrays to hold device addresses
DeviceAddress insideThermometer, outsideThermometer;

// function that will be called when an alarm condition exists during DallasTemperatures::processAlarms();
void newAlarmHandler(uint8_t* deviceAddress)
{
Serial.println("Alarm Handler Start");
printAlarmInfo(deviceAddress);
printTemp(deviceAddress);
Serial.println();
Serial.println("Alarm Handler Finish");
}

void printCurrentTemp(DeviceAddress deviceAddress)
{
printAddress(deviceAddress);
printTemp(deviceAddress);
Serial.println();
}

void printAddress(DeviceAddress deviceAddress)
{
Serial.print("Address: ");
for (uint8_t i = 0; i < 8; i++)
{
if (deviceAddress[i] < 16) Serial.print("0");
Serial.print(deviceAddress[i], HEX);
}
Serial.print(" ");
}

void printTemp(DeviceAddress deviceAddress)
{
float tempC = sensors.getTempC(deviceAddress);
if (tempC != DEVICE_DISCONNECTED_C)
{
Serial.print("Current Temp C: ");
Serial.print(tempC);
}
else Serial.print("DEVICE DISCONNECTED");
Serial.print(" ");
}

void printAlarmInfo(DeviceAddress deviceAddress)
{
char temp;
printAddress(deviceAddress);
temp = sensors.getHighAlarmTemp(deviceAddress);
Serial.print("High Alarm: ");
Serial.print(temp, DEC);
Serial.print("C");
Serial.print(" Low Alarm: ");
temp = sensors.getLowAlarmTemp(deviceAddress);
Serial.print(temp, DEC);
Serial.print("C");
Serial.print(" ");
}

void setup(void)
{
// start serial port
Serial.begin(9600);
Serial.println("Dallas Temperature IC Control Library Demo");

// Start up the library
sensors.begin();
// locate devices on the bus
Serial.print("Found ");
Serial.print(sensors.getDeviceCount(), DEC);
Serial.println(" devices.");

// search for devices on the bus and assign based on an index
if (!sensors.getAddress(insideThermometer, 0)) Serial.println("Unable to find address for Device 0");
if (!sensors.getAddress(outsideThermometer, 1)) Serial.println("Unable to find address for Device 1");

Serial.print("Device insideThermometer ");
printAlarmInfo(insideThermometer);
Serial.println();
Serial.print("Device outsideThermometer ");
printAlarmInfo(outsideThermometer);
Serial.println();
// set alarm ranges
Serial.println("Setting alarm temps...");
sensors.setHighAlarmTemp(insideThermometer, 26);
sensors.setLowAlarmTemp(insideThermometer, 22);
sensors.setHighAlarmTemp(outsideThermometer, 25);
sensors.setLowAlarmTemp(outsideThermometer, 21);
Serial.print("New insideThermometer ");
printAlarmInfo(insideThermometer);
Serial.println();
Serial.print("New outsideThermometer ");
printAlarmInfo(outsideThermometer);
Serial.println();

// attach alarm handler
sensors.setAlarmHandler(&newAlarmHandler);

}

void loop(void)
{
// ask the devices to measure the temperature
sensors.requestTemperatures();
// if an alarm condition exists as a result of the most recent
// requestTemperatures() request, it exists until the next time
// requestTemperatures() is called AND there isn't an alarm condition
// on the device
if (sensors.hasAlarm())
{
Serial.println("Oh noes! There is at least one alarm on the bus.");
}

// call alarm handler function defined by sensors.setAlarmHandler
// for each device reporting an alarm
sensors.processAlarms();

if (!sensors.hasAlarm())
{
// just print out the current temperature
printCurrentTemp(insideThermometer);
printCurrentTemp(outsideThermometer);
}
delay(1000);
}

+ 0
- 35
MK3_Firmware/lib/DallasTemperature_Modified/examples/ExternalPullup/ExternalPullup.ino View File

@@ -1,35 +0,0 @@
#include <OneWire.h>
#include <DallasTemperature.h>
// Data wire is plugged into port 2 on the Arduino, while external pullup P-MOSFET gate into port 3
#define ONE_WIRE_BUS 2
#define ONE_WIRE_PULLUP 3
// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs)
OneWire oneWire(ONE_WIRE_BUS);
// Pass our oneWire reference to Dallas Temperature.
DallasTemperature sensors(&oneWire, ONE_WIRE_PULLUP);
void setup(void)
{
// start serial port
Serial.begin(9600);
Serial.println("Dallas Temperature IC Control Library Demo");
// Start up the library
sensors.begin();
}
void loop(void)
{
// call sensors.requestTemperatures() to issue a global temperature
// request to all devices on the bus
Serial.print("Requesting temperatures...");
sensors.requestTemperatures(); // Send the command to get temperatures
Serial.println("DONE");
for(int i=0;i<sensors.getDeviceCount();i++) {
Serial.println("Temperature for Device "+String(i)+" is: " + String(sensors.getTempCByIndex(i)));
}
}

+ 0
- 43
MK3_Firmware/lib/DallasTemperature_Modified/examples/Multibus_simple/Multibus_simple.ino View File

@@ -1,43 +0,0 @@
#include <OneWire.h>
#include <DallasTemperature.h>

OneWire ds18x20[] = { 3, 7 };
const int oneWireCount = sizeof(ds18x20)/sizeof(OneWire);
DallasTemperature sensor[oneWireCount];

void setup(void) {
// start serial port
Serial.begin(9600);
Serial.println("Dallas Temperature Multiple Bus Control Library Simple Demo");
Serial.print("============Ready with ");
Serial.print(oneWireCount);
Serial.println(" Sensors================");
// Start up the library on all defined bus-wires
DeviceAddress deviceAddress;
for (int i = 0; i < oneWireCount; i++) {;
sensor[i].setOneWire(&ds18x20[i]);
sensor[i].begin();
if (sensor[i].getAddress(deviceAddress, 0)) sensor[i].setResolution(deviceAddress, 12);
}
}

void loop(void) {
// call sensors.requestTemperatures() to issue a global temperature
// request to all devices on the bus
Serial.print("Requesting temperatures...");
for (int i = 0; i < oneWireCount; i++) {
sensor[i].requestTemperatures();
}
Serial.println("DONE");
delay(1000);
for (int i = 0; i < oneWireCount; i++) {
float temperature = sensor[i].getTempCByIndex(0);
Serial.print("Temperature for the sensor ");
Serial.print(i);
Serial.print(" is ");
Serial.println(temperature);
}
Serial.println();
}

+ 0
- 148
MK3_Firmware/lib/DallasTemperature_Modified/examples/Multiple/Multiple.pde View File

@@ -1,148 +0,0 @@
// Include the libraries we need
#include <OneWire.h>
#include <DallasTemperature.h>

// Data wire is plugged into port 2 on the Arduino
#define ONE_WIRE_BUS 2
#define TEMPERATURE_PRECISION 9

// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs)
OneWire oneWire(ONE_WIRE_BUS);

// Pass our oneWire reference to Dallas Temperature.
DallasTemperature sensors(&oneWire);

// arrays to hold device addresses
DeviceAddress insideThermometer, outsideThermometer;

// Assign address manually. The addresses below will beed to be changed
// to valid device addresses on your bus. Device address can be retrieved
// by using either oneWire.search(deviceAddress) or individually via
// sensors.getAddress(deviceAddress, index)
// DeviceAddress insideThermometer = { 0x28, 0x1D, 0x39, 0x31, 0x2, 0x0, 0x0, 0xF0 };
// DeviceAddress outsideThermometer = { 0x28, 0x3F, 0x1C, 0x31, 0x2, 0x0, 0x0, 0x2 };

void setup(void)
{
// start serial port
Serial.begin(9600);
Serial.println("Dallas Temperature IC Control Library Demo");

// Start up the library
sensors.begin();

// locate devices on the bus
Serial.print("Locating devices...");
Serial.print("Found ");
Serial.print(sensors.getDeviceCount(), DEC);
Serial.println(" devices.");

// report parasite power requirements
Serial.print("Parasite power is: ");
if (sensors.isParasitePowerMode()) Serial.println("ON");
else Serial.println("OFF");

// Search for devices on the bus and assign based on an index. Ideally,
// you would do this to initially discover addresses on the bus and then
// use those addresses and manually assign them (see above) once you know
// the devices on your bus (and assuming they don't change).
//
// method 1: by index
if (!sensors.getAddress(insideThermometer, 0)) Serial.println("Unable to find address for Device 0");
if (!sensors.getAddress(outsideThermometer, 1)) Serial.println("Unable to find address for Device 1");

// method 2: search()
// search() looks for the next device. Returns 1 if a new address has been
// returned. A zero might mean that the bus is shorted, there are no devices,
// or you have already retrieved all of them. It might be a good idea to
// check the CRC to make sure you didn't get garbage. The order is
// deterministic. You will always get the same devices in the same order
//
// Must be called before search()
//oneWire.reset_search();
// assigns the first address found to insideThermometer
//if (!oneWire.search(insideThermometer)) Serial.println("Unable to find address for insideThermometer");
// assigns the seconds address found to outsideThermometer
//if (!oneWire.search(outsideThermometer)) Serial.println("Unable to find address for outsideThermometer");

// show the addresses we found on the bus
Serial.print("Device 0 Address: ");
printAddress(insideThermometer);
Serial.println();

Serial.print("Device 1 Address: ");
printAddress(outsideThermometer);
Serial.println();

// set the resolution to 9 bit per device
sensors.setResolution(insideThermometer, TEMPERATURE_PRECISION);
sensors.setResolution(outsideThermometer, TEMPERATURE_PRECISION);

Serial.print("Device 0 Resolution: ");
Serial.print(sensors.getResolution(insideThermometer), DEC);
Serial.println();

Serial.print("Device 1 Resolution: ");
Serial.print(sensors.getResolution(outsideThermometer), DEC);
Serial.println();
}

// function to print a device address
void printAddress(DeviceAddress deviceAddress)
{
for (uint8_t i = 0; i < 8; i++)
{
// zero pad the address if necessary
if (deviceAddress[i] < 16) Serial.print("0");
Serial.print(deviceAddress[i], HEX);
}
}

// function to print the temperature for a device
void printTemperature(DeviceAddress deviceAddress)
{
float tempC = sensors.getTempC(deviceAddress);
if(tempC == DEVICE_DISCONNECTED_C)
{
Serial.println("Error: Could not read temperature data");
return;
}
Serial.print("Temp C: ");
Serial.print(tempC);
Serial.print(" Temp F: ");
Serial.print(DallasTemperature::toFahrenheit(tempC));
}

// function to print a device's resolution
void printResolution(DeviceAddress deviceAddress)
{
Serial.print("Resolution: ");
Serial.print(sensors.getResolution(deviceAddress));
Serial.println();
}

// main function to print information about a device
void printData(DeviceAddress deviceAddress)
{
Serial.print("Device Address: ");
printAddress(deviceAddress);
Serial.print(" ");
printTemperature(deviceAddress);
Serial.println();
}

/*
Main function, calls the temperatures in a loop.
*/
void loop(void)
{
// call sensors.requestTemperatures() to issue a global temperature
// request to all devices on the bus
Serial.print("Requesting temperatures...");
sensors.requestTemperatures();
Serial.println("DONE");

// print the device information
printData(insideThermometer);
printData(outsideThermometer);
}

+ 0
- 47
MK3_Firmware/lib/DallasTemperature_Modified/examples/SetUserData/SetUserData.ino View File

@@ -1,47 +0,0 @@
//
// This sketch does not use the ALARM registers and uses those 2 bytes as a counter
// these 2 bytes can be used for other purposes as well e.g. last temperature or
// a specific ID.
//

#include <OneWire.h>
#include <DallasTemperature.h>

// Data wire is plugged into port 2 on the Arduino
#define ONE_WIRE_BUS 2

// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs)
OneWire oneWire(ONE_WIRE_BUS);

// Pass our oneWire reference to Dallas Temperature.
DallasTemperature sensors(&oneWire);

int count = 0;

void setup(void)
{
// start serial port
Serial.begin(9600);
Serial.println("Dallas Temperature IC Control Library Demo");

// Start up the library
sensors.begin();
}

void loop(void)
{
// call sensors.requestTemperatures() to issue a global temperature
// request to all devices on the bus
Serial.print("Requesting temperatures...");
sensors.requestTemperatures(); // Send the command to get temperatures
Serial.println("DONE");
Serial.print("Temperature for the device 1 (index 0) is: ");
Serial.println(sensors.getTempCByIndex(0));
count++;
sensors.setUserDataByIndex(0, count);
int x = sensors.getUserDataByIndex(0);
Serial.println(count);
}

+ 0
- 51
MK3_Firmware/lib/DallasTemperature_Modified/examples/Simple/Simple.pde View File

@@ -1,51 +0,0 @@
// Include the libraries we need
#include <OneWire.h>
#include <DallasTemperature.h>

// Data wire is plugged into port 2 on the Arduino
#define ONE_WIRE_BUS 2

// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs)
OneWire oneWire(ONE_WIRE_BUS);

// Pass our oneWire reference to Dallas Temperature.
DallasTemperature sensors(&oneWire);

/*
* The setup function. We only start the sensors here
*/
void setup(void)
{
// start serial port
Serial.begin(9600);
Serial.println("Dallas Temperature IC Control Library Demo");

// Start up the library
sensors.begin();
}

/*
* Main function, get and show the temperature
*/
void loop(void)
{
// call sensors.requestTemperatures() to issue a global temperature
// request to all devices on the bus
Serial.print("Requesting temperatures...");
sensors.requestTemperatures(); // Send the command to get temperatures
Serial.println("DONE");
// After we got the temperatures, we can print them here.
// We use the function ByIndex, and as an example get the temperature from the first sensor only.
float tempC = sensors.getTempCByIndex(0);

// Check if reading was successful
if(tempC != DEVICE_DISCONNECTED_C)
{
Serial.print("Temperature for the device 1 (index 0) is: ");
Serial.println(tempC);
}
else
{
Serial.println("Error: Could not read temperature data");
}
}

+ 0
- 121
MK3_Firmware/lib/DallasTemperature_Modified/examples/Single/Single.pde View File

@@ -1,121 +0,0 @@
// Include the libraries we need
#include <OneWire.h>
#include <DallasTemperature.h>

// Data wire is plugged into port 2 on the Arduino
#define ONE_WIRE_BUS 2

// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs)
OneWire oneWire(ONE_WIRE_BUS);

// Pass our oneWire reference to Dallas Temperature.
DallasTemperature sensors(&oneWire);

// arrays to hold device address
DeviceAddress insideThermometer;

/*
* Setup function. Here we do the basics
*/
void setup(void)
{
// start serial port
Serial.begin(9600);
Serial.println("Dallas Temperature IC Control Library Demo");

// locate devices on the bus
Serial.print("Locating devices...");
sensors.begin();
Serial.print("Found ");
Serial.print(sensors.getDeviceCount(), DEC);
Serial.println(" devices.");

// report parasite power requirements
Serial.print("Parasite power is: ");
if (sensors.isParasitePowerMode()) Serial.println("ON");
else Serial.println("OFF");
// Assign address manually. The addresses below will beed to be changed
// to valid device addresses on your bus. Device address can be retrieved
// by using either oneWire.search(deviceAddress) or individually via
// sensors.getAddress(deviceAddress, index)
// Note that you will need to use your specific address here
//insideThermometer = { 0x28, 0x1D, 0x39, 0x31, 0x2, 0x0, 0x0, 0xF0 };

// Method 1:
// Search for devices on the bus and assign based on an index. Ideally,
// you would do this to initially discover addresses on the bus and then
// use those addresses and manually assign them (see above) once you know
// the devices on your bus (and assuming they don't change).
if (!sensors.getAddress(insideThermometer, 0)) Serial.println("Unable to find address for Device 0");
// method 2: search()
// search() looks for the next device. Returns 1 if a new address has been
// returned. A zero might mean that the bus is shorted, there are no devices,
// or you have already retrieved all of them. It might be a good idea to
// check the CRC to make sure you didn't get garbage. The order is
// deterministic. You will always get the same devices in the same order
//
// Must be called before search()
//oneWire.reset_search();
// assigns the first address found to insideThermometer
//if (!oneWire.search(insideThermometer)) Serial.println("Unable to find address for insideThermometer");

// show the addresses we found on the bus
Serial.print("Device 0 Address: ");
printAddress(insideThermometer);
Serial.println();

// set the resolution to 9 bit (Each Dallas/Maxim device is capable of several different resolutions)
sensors.setResolution(insideThermometer, 9);
Serial.print("Device 0 Resolution: ");
Serial.print(sensors.getResolution(insideThermometer), DEC);
Serial.println();
}

// function to print the temperature for a device
void printTemperature(DeviceAddress deviceAddress)
{
// method 1 - slower
//Serial.print("Temp C: ");
//Serial.print(sensors.getTempC(deviceAddress));
//Serial.print(" Temp F: ");
//Serial.print(sensors.getTempF(deviceAddress)); // Makes a second call to getTempC and then converts to Fahrenheit

// method 2 - faster
float tempC = sensors.getTempC(deviceAddress);
if(tempC == DEVICE_DISCONNECTED_C)
{
Serial.println("Error: Could not read temperature data");
return;
}
Serial.print("Temp C: ");
Serial.print(tempC);
Serial.print(" Temp F: ");
Serial.println(DallasTemperature::toFahrenheit(tempC)); // Converts tempC to Fahrenheit
}
/*
* Main function. It will request the tempC from the sensors and display on Serial.
*/
void loop(void)
{
// call sensors.requestTemperatures() to issue a global temperature
// request to all devices on the bus
Serial.print("Requesting temperatures...");
sensors.requestTemperatures(); // Send the command to get temperatures
Serial.println("DONE");
// It responds almost immediately. Let's print out the data
printTemperature(insideThermometer); // Use a simple function to print out the data
}

// function to print a device address
void printAddress(DeviceAddress deviceAddress)
{
for (uint8_t i = 0; i < 8; i++)
{
if (deviceAddress[i] < 16) Serial.print("0");
Serial.print(deviceAddress[i], HEX);
}
}

+ 0
- 129
MK3_Firmware/lib/DallasTemperature_Modified/examples/Tester/Tester.pde View File

@@ -1,129 +0,0 @@
#include <OneWire.h>
#include <DallasTemperature.h>

// Data wire is plugged into port 2 on the Arduino
#define ONE_WIRE_BUS 2
#define TEMPERATURE_PRECISION 9 // Lower resolution

// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs)
OneWire oneWire(ONE_WIRE_BUS);

// Pass our oneWire reference to Dallas Temperature.
DallasTemperature sensors(&oneWire);

int numberOfDevices; // Number of temperature devices found

DeviceAddress tempDeviceAddress; // We'll use this variable to store a found device address

void setup(void)
{
// start serial port
Serial.begin(9600);
Serial.println("Dallas Temperature IC Control Library Demo");

// Start up the library
sensors.begin();
// Grab a count of devices on the wire
numberOfDevices = sensors.getDeviceCount();
// locate devices on the bus
Serial.print("Locating devices...");
Serial.print("Found ");
Serial.print(numberOfDevices, DEC);
Serial.println(" devices.");

// report parasite power requirements
Serial.print("Parasite power is: ");
if (sensors.isParasitePowerMode()) Serial.println("ON");
else Serial.println("OFF");
// Loop through each device, print out address
for(int i=0;i<numberOfDevices; i++)
{
// Search the wire for address
if(sensors.getAddress(tempDeviceAddress, i))
{
Serial.print("Found device ");
Serial.print(i, DEC);
Serial.print(" with address: ");
printAddress(tempDeviceAddress);
Serial.println();
Serial.print("Setting resolution to ");
Serial.println(TEMPERATURE_PRECISION, DEC);
// set the resolution to TEMPERATURE_PRECISION bit (Each Dallas/Maxim device is capable of several different resolutions)
sensors.setResolution(tempDeviceAddress, TEMPERATURE_PRECISION);
Serial.print("Resolution actually set to: ");
Serial.print(sensors.getResolution(tempDeviceAddress), DEC);
Serial.println();
}else{
Serial.print("Found ghost device at ");
Serial.print(i, DEC);
Serial.print(" but could not detect address. Check power and cabling");
}
}

}

// function to print the temperature for a device
void printTemperature(DeviceAddress deviceAddress)
{
// method 1 - slower
//Serial.print("Temp C: ");
//Serial.print(sensors.getTempC(deviceAddress));
//Serial.print(" Temp F: ");
//Serial.print(sensors.getTempF(deviceAddress)); // Makes a second call to getTempC and then converts to Fahrenheit

// method 2 - faster
float tempC = sensors.getTempC(deviceAddress);
if(tempC == DEVICE_DISCONNECTED_C)
{
Serial.println("Error: Could not read temperature data");
return;
}
Serial.print("Temp C: ");
Serial.print(tempC);
Serial.print(" Temp F: ");
Serial.println(DallasTemperature::toFahrenheit(tempC)); // Converts tempC to Fahrenheit
}

void loop(void)
{
// call sensors.requestTemperatures() to issue a global temperature
// request to all devices on the bus
Serial.print("Requesting temperatures...");
sensors.requestTemperatures(); // Send the command to get temperatures
Serial.println("DONE");
// Loop through each device, print out temperature data
for(int i=0;i<numberOfDevices; i++)
{
// Search the wire for address
if(sensors.getAddress(tempDeviceAddress, i))
{
// Output the device ID
Serial.print("Temperature for device: ");
Serial.println(i,DEC);
// It responds almost immediately. Let's print out the data
printTemperature(tempDeviceAddress); // Use a simple function to print out the data
}
//else ghost device! Check your power requirements and cabling
}
}

// function to print a device address
void printAddress(DeviceAddress deviceAddress)
{
for (uint8_t i = 0; i < 8; i++)
{
if (deviceAddress[i] < 16) Serial.print("0");
Serial.print(deviceAddress[i], HEX);
}
}

+ 0
- 45
MK3_Firmware/lib/DallasTemperature_Modified/examples/TwoPin_DS18B20/TwoPin_DS18B20.ino View File

@@ -1,45 +0,0 @@
//
// FILE: TwoPin_DS18B20.ino
// AUTHOR: Rob Tillaart
// VERSION: 0.1.00
// PURPOSE: two pins for two sensors demo
// DATE: 2014-06-13
// URL: http://forum.arduino.cc/index.php?topic=216835.msg1764333#msg1764333
//
// Released to the public domain
//

#include <OneWire.h>
#include <DallasTemperature.h>

#define ONE_WIRE_BUS_1 2
#define ONE_WIRE_BUS_2 4

OneWire oneWire_in(ONE_WIRE_BUS_1);
OneWire oneWire_out(ONE_WIRE_BUS_2);

DallasTemperature sensor_inhouse(&oneWire_in);
DallasTemperature sensor_outhouse(&oneWire_out);

void setup(void)
{
Serial.begin(9600);
Serial.println("Dallas Temperature Control Library Demo - TwoPin_DS18B20");

sensor_inhouse.begin();
sensor_outhouse.begin();
}

void loop(void)
{
Serial.print("Requesting temperatures...");
sensor_inhouse.requestTemperatures();
sensor_outhouse.requestTemperatures();
Serial.println(" done");

Serial.print("Inhouse: ");
Serial.println(sensor_inhouse.getTempCByIndex(0));

Serial.print("Outhouse: ");
Serial.println(sensor_outhouse.getTempCByIndex(0));
}

+ 0
- 115
MK3_Firmware/lib/DallasTemperature_Modified/examples/UserDataDemo/UserDataDemo.ino View File

@@ -1,115 +0,0 @@
//
// FILE: UserDataDemo.ino
// AUTHOR: Rob Tillaart
// VERSION: 0.1.0
// PURPOSE: use of alarm field as user identification demo
// DATE: 2019-12-23
// URL:
//
// Released to the public domain
//

#include <OneWire.h>
#include <DallasTemperature.h>

#define ONE_WIRE_BUS 2

OneWire oneWire(ONE_WIRE_BUS);
DallasTemperature sensors(&oneWire);

uint8_t deviceCount = 0;

// Add 4 prepared sensors to the bus
// use the UserDataWriteBatch demo to prepare 4 different labeled sensors
struct
{
int id;
DeviceAddress addr;
} T[4];

float getTempByID(int id)
{
for (uint8_t index = 0; index < deviceCount; index++)
{
if (T[index].id == id)
{
return sensors.getTempC(T[index].addr);
}
}
return -999;
}

void printAddress(DeviceAddress deviceAddress)
{
for (uint8_t i = 0; i < 8; i++)
{
// zero pad the address if necessary
if (deviceAddress[i] < 16) Serial.print("0");
Serial.print(deviceAddress[i], HEX);
}
}

void setup(void)
{
Serial.begin(115200);
Serial.println(__FILE__);
Serial.println("Dallas Temperature Demo");

sensors.begin();
// count devices
deviceCount = sensors.getDeviceCount();
Serial.print("#devices: ");
Serial.println(deviceCount);

// Read ID's per sensor
// and put them in T array
for (uint8_t index = 0; index < deviceCount; index++)
{
// go through sensors
sensors.getAddress(T[index].addr, index);
T[index].id = sensors.getUserData(T[index].addr);
}

// Check all 4 sensors are set
for (uint8_t index = 0; index < deviceCount; index++)
{
Serial.println();
Serial.println(T[index].id);
printAddress(T[index].addr);
Serial.println();
}
Serial.println();

}


void loop(void)
{
Serial.println();
Serial.print(millis());
Serial.println("\treq temp");
sensors.requestTemperatures();

Serial.print(millis());
Serial.println("\tGet temp by address");
for (int i = 0; i < 4; i++)
{
Serial.print(millis());
Serial.print("\t temp:\t");
Serial.println(sensors.getTempC(T[i].addr));
}

Serial.print(millis());
Serial.println("\tGet temp by ID"); // assume ID = 0, 1, 2, 3
for (int id = 0; id < 4; id++)
{
Serial.print(millis());
Serial.print("\t temp:\t");
Serial.println(getTempByID(id));
}

delay(1000);
}

// END OF FILE

+ 0
- 107
MK3_Firmware/lib/DallasTemperature_Modified/examples/UserDataWriteBatch/UserDataWriteBatch.ino View File

@@ -1,107 +0,0 @@
//
// FILE: UserDataWriteBatch.ino
// AUTHOR: Rob Tillaart
// VERSION: 0.1.0
// PURPOSE: use of alarm field as user identification demo
// DATE: 2019-12-23
// URL:
//
// Released to the public domain
//

#include <OneWire.h>
#include <DallasTemperature.h>

#define ONE_WIRE_BUS 2

OneWire oneWire(ONE_WIRE_BUS);
DallasTemperature sensors(&oneWire);

uint8_t deviceCount = 0;

void printAddress(DeviceAddress deviceAddress)
{
for (uint8_t i = 0; i < 8; i++)
{
// zero pad the address if necessary
if (deviceAddress[i] < 16) Serial.print("0");
Serial.print(deviceAddress[i], HEX);
}
}



void setup(void)
{
Serial.begin(115200);
Serial.println(__FILE__);
Serial.println("Write user ID to DS18B20\n");

sensors.begin();

// count devices
deviceCount = sensors.getDeviceCount();
Serial.print("#devices: ");
Serial.println(deviceCount);
Serial.println();
Serial.println("current ID's");
for (uint8_t index = 0; index < deviceCount; index++)
{
DeviceAddress t;
sensors.getAddress(t, index);
printAddress(t);
Serial.print("\t\tID: ");
int id = sensors.getUserData(t);
Serial.println(id);
}
Serial.println();
Serial.print("Enter ID for batch: ");
int c = 0;
int id = 0;
while (c != '\n' && c != '\r')
{
c = Serial.read();
switch(c)
{
case '0'...'9':
id *= 10;
id += (c - '0');
break;
default:
break;
}
}
Serial.println();
Serial.println(id);
Serial.println();

Serial.println("Start labeling ...");
for (uint8_t index = 0; index < deviceCount; index++)
{
Serial.print(".");
DeviceAddress t;
sensors.getAddress(t, index);
sensors.setUserData(t, id);
}
Serial.println();

Serial.println();
Serial.println("Show results ...");
for (uint8_t index = 0; index < deviceCount; index++)
{
DeviceAddress t;
sensors.getAddress(t, index);
printAddress(t);
Serial.print("\t\tID: ");
int id = sensors.getUserData(t);
Serial.println(id);
}
Serial.println("Done ...");

}

void loop(void) {}

// END OF FILE

+ 0
- 66
MK3_Firmware/lib/DallasTemperature_Modified/examples/WaitForConversion/WaitForConversion.pde View File

@@ -1,66 +0,0 @@
#include <OneWire.h>
#include <DallasTemperature.h>

// Data wire is plugged into port 2 on the Arduino
#define ONE_WIRE_BUS 2

// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs)
OneWire oneWire(ONE_WIRE_BUS);

// Pass our oneWire reference to Dallas Temperature.
DallasTemperature sensors(&oneWire);

void setup(void)
{
// start serial port
Serial.begin(115200);
Serial.println("Dallas Temperature Control Library - Async Demo");
Serial.println("\nDemo shows the difference in length of the call\n\n");

// Start up the library
sensors.begin();
}

void loop(void)
{
// Request temperature conversion (traditional)
Serial.println("Before blocking requestForConversion");
unsigned long start = millis();

sensors.requestTemperatures();

unsigned long stop = millis();
Serial.println("After blocking requestForConversion");
Serial.print("Time used: ");
Serial.println(stop - start);
// get temperature
Serial.print("Temperature: ");
Serial.println(sensors.getTempCByIndex(0));
Serial.println("\n");
// Request temperature conversion - non-blocking / async
Serial.println("Before NON-blocking/async requestForConversion");
start = millis();
sensors.setWaitForConversion(false); // makes it async
sensors.requestTemperatures();
sensors.setWaitForConversion(true);
stop = millis();
Serial.println("After NON-blocking/async requestForConversion");
Serial.print("Time used: ");
Serial.println(stop - start);
// 9 bit resolution by default
// Note the programmer is responsible for the right delay
// we could do something usefull here instead of the delay
int resolution = 9;
delay(750/ (1 << (12-resolution)));
// get temperature
Serial.print("Temperature: ");
Serial.println(sensors.getTempCByIndex(0));
Serial.println("\n\n\n\n");
delay(5000);
}

+ 0
- 80
MK3_Firmware/lib/DallasTemperature_Modified/examples/WaitForConversion2/WaitForConversion2.pde View File

@@ -1,80 +0,0 @@
//
// Sample of using Async reading of Dallas Temperature Sensors
//
#include <OneWire.h>
#include <DallasTemperature.h>

// Data wire is plugged into port 2 on the Arduino
#define ONE_WIRE_BUS 2

// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs)
OneWire oneWire(ONE_WIRE_BUS);

// Pass our oneWire reference to Dallas Temperature.
DallasTemperature sensors(&oneWire);

DeviceAddress tempDeviceAddress;

int resolution = 12;
unsigned long lastTempRequest = 0;
int delayInMillis = 0;
float temperature = 0.0;
int idle = 0;
//
// SETUP
//
void setup(void)
{
Serial.begin(115200);
Serial.println("Dallas Temperature Control Library - Async Demo");
Serial.print("Library Version: ");
Serial.println(DALLASTEMPLIBVERSION);
Serial.println("\n");

sensors.begin();
sensors.getAddress(tempDeviceAddress, 0);
sensors.setResolution(tempDeviceAddress, resolution);
sensors.setWaitForConversion(false);
sensors.requestTemperatures();
delayInMillis = 750 / (1 << (12 - resolution));
lastTempRequest = millis();
pinMode(13, OUTPUT);
}

void loop(void)
{
if (millis() - lastTempRequest >= delayInMillis) // waited long enough??
{
digitalWrite(13, LOW);
Serial.print(" Temperature: ");
temperature = sensors.getTempCByIndex(0);
Serial.println(temperature, resolution - 8);
Serial.print(" Resolution: ");
Serial.println(resolution);
Serial.print("Idle counter: ");
Serial.println(idle);
Serial.println();
idle = 0;
// immediately after fetching the temperature we request a new sample
// in the async modus
// for the demo we let the resolution change to show differences
resolution++;
if (resolution > 12) resolution = 9;
sensors.setResolution(tempDeviceAddress, resolution);
sensors.requestTemperatures();
delayInMillis = 750 / (1 << (12 - resolution));
lastTempRequest = millis();
}
digitalWrite(13, HIGH);
// we can do usefull things here
// for the demo we just count the idle time in millis
delay(1);
idle++;
}

+ 0
- 67
MK3_Firmware/lib/DallasTemperature_Modified/examples/oneWireSearch/oneWireSearch.ino View File

@@ -1,67 +0,0 @@
//
// FILE: oneWireSearch.ino
// AUTHOR: Rob Tillaart
// VERSION: 0.1.02
// PURPOSE: scan for 1-Wire devices + code snippet generator
// DATE: 2015-june-30
// URL: http://forum.arduino.cc/index.php?topic=333923
//
// inspired by http://www.hacktronics.com/Tutorials/arduino-1-wire-address-finder.html
//
// Released to the public domain
//
// 0.1.00 initial version
// 0.1.01 first published version
// 0.1.02 small output changes

#include <OneWire.h>

void setup()
{
Serial.begin(115200);
Serial.println("//\n// Start oneWireSearch.ino \n//");

for (uint8_t pin = 2; pin < 13; pin++)
{
findDevices(pin);
}
Serial.println("\n//\n// End oneWireSearch.ino \n//");
}

void loop()
{
}

uint8_t findDevices(int pin)
{
OneWire ow(pin);

uint8_t address[8];
uint8_t count = 0;


if (ow.search(address))
{
Serial.print("\nuint8_t pin");
Serial.print(pin, DEC);
Serial.println("[][8] = {");
do {
count++;
Serial.println(" {");
for (uint8_t i = 0; i < 8; i++)
{
Serial.print("0x");
if (address[i] < 0x10) Serial.print("0");
Serial.print(address[i], HEX);
if (i < 7) Serial.print(", ");
}
Serial.println(" },");
} while (ow.search(address));

Serial.println("};");
Serial.print("// nr devices found: ");
Serial.println(count);
}

return count;
}

+ 0
- 92
MK3_Firmware/lib/DallasTemperature_Modified/examples/readPowerSupply/readPowerSupply.ino View File

@@ -1,92 +0,0 @@
//
// FILE: readPowerSupply.ino
// AUTHOR: Rob Tillaart
// VERSION: 0.1.0
// PURPOSE: demo
// DATE: 2020-02-10
//
// Released to the public domain
//

// Include the libraries we need
#include <OneWire.h>
#include <DallasTemperature.h>

// Data wire is plugged into port 2 on the Arduino
#define ONE_WIRE_BUS 2

// Setup a oneWire instance to communicate with any OneWire devices
OneWire oneWire(ONE_WIRE_BUS);

// Pass our oneWire reference to Dallas Temperature.
DallasTemperature sensors(&oneWire);

// arrays to hold device addresses
DeviceAddress insideThermometer, outsideThermometer;
// Assign address manually. The addresses below will beed to be changed
// to valid device addresses on your bus. Device address can be retrieved
// by using either oneWire.search(deviceAddress) or individually via
// sensors.getAddress(deviceAddress, index)
// DeviceAddress insideThermometer = { 0x28, 0x1D, 0x39, 0x31, 0x2, 0x0, 0x0, 0xF0 };
// DeviceAddress outsideThermometer = { 0x28, 0x3F, 0x1C, 0x31, 0x2, 0x0, 0x0, 0x2 };

int devCount = 0;

/*
* The setup function. We only start the sensors here
*/
void setup(void)
{
Serial.begin(115200);
Serial.println("Arduino Temperature Control Library Demo - readPowerSupply");

sensors.begin();

devCount = sensors.getDeviceCount();
Serial.print("#devices: ");
Serial.println(devCount);

// report parasite power requirements
Serial.print("Parasite power is: ");
if (sensors.readPowerSupply()) Serial.println("ON"); // no address means "scan all devices for parasite mode"
else Serial.println("OFF");

// Search for devices on the bus and assign based on an index.
if (!sensors.getAddress(insideThermometer, 0)) Serial.println("Unable to find address for Device 0");
if (!sensors.getAddress(outsideThermometer, 1)) Serial.println("Unable to find address for Device 1");

// show the addresses we found on the bus
Serial.print("Device 0 Address: ");
printAddress(insideThermometer);
Serial.println();
Serial.print("Power = parasite: ");
Serial.println(sensors.readPowerSupply(insideThermometer));
Serial.println();
Serial.println();

Serial.print("Device 1 Address: ");
printAddress(outsideThermometer);
Serial.println();
Serial.print("Power = parasite: ");
Serial.println(sensors.readPowerSupply(outsideThermometer));
Serial.println();
Serial.println();
}

// function to print a device address
void printAddress(DeviceAddress deviceAddress)
{
for (uint8_t i = 0; i < 8; i++)
{
// zero pad the address if necessary
if (deviceAddress[i] < 0x10) Serial.print("0");
Serial.print(deviceAddress[i], HEX);
}
}

// empty on purpose
void loop(void)
{
}

// END OF FILE

+ 0
- 54
MK3_Firmware/lib/DallasTemperature_Modified/keywords.txt View File

@@ -1,54 +0,0 @@
#######################################
# Syntax Coloring Map For DallasTemperature
#######################################

#######################################
# Datatypes (KEYWORD1)
#######################################
DallasTemperature KEYWORD1
OneWire KEYWORD1
AlarmHandler KEYWORD1
DeviceAddress KEYWORD1

#######################################
# Methods and Functions (KEYWORD2)
#######################################

setResolution KEYWORD2
getResolution KEYWORD2
getTempC KEYWORD2
toFahrenheit KEYWORD2
getTempF KEYWORD2
getTempCByIndex KEYWORD2
getTempFByIndex KEYWORD2
setWaitForConversion KEYWORD2
getWaitForConversion KEYWORD2
requestTemperatures KEYWORD2
requestTemperaturesByAddress KEYWORD2
requestTemperaturesByIndex KEYWORD2
isParasitePowerMode KEYWORD2
begin KEYWORD2
getDeviceCount KEYWORD2
getAddress KEYWORD2
validAddress KEYWORD2
isConnected KEYWORD2
readScratchPad KEYWORD2
writeScratchPad KEYWORD2
readPowerSupply KEYWORD2
setHighAlarmTemp KEYWORD2
setLowAlarmTemp KEYWORD2
getHighAlarmTemp KEYWORD2
getLowAlarmTemp KEYWORD2
resetAlarmSearch KEYWORD2
alarmSearch KEYWORD2
hasAlarm KEYWORD2
toCelsius KEYWORD2
processAlarmss KEYWORD2
setAlarmHandlers KEYWORD2
defaultAlarmHandler KEYWORD2
calculateTemperature KEYWORD2

#######################################
# Constants (LITERAL1)
#######################################


+ 0
- 40
MK3_Firmware/lib/DallasTemperature_Modified/library.json View File

@@ -1,40 +0,0 @@
{
"name": "DallasTemperature",
"keywords": "onewire, 1-wire, bus, sensor, temperature",
"description": "Arduino Library for Dallas Temperature ICs (DS18B20, DS18S20, DS1822, DS1820)",
"repository":
{
"type": "git",
"url": "https://github.com/milesburton/Arduino-Temperature-Control-Library.git"
},
"authors":
[
{
"name": "Miles Burton",
"email": "miles@mnetcs.com",
"url": "http://www.milesburton.com",
"maintainer": true
},
{
"name": "Tim Newsome",
"email": "nuisance@casualhacker.net"
},
{
"name": "Guil Barros",
"email": "gfbarros@bappos.com"
},
{
"name": "Rob Tillaart",
"email": "rob.tillaart@gmail.com"
}
],
"dependencies":
{
"name": "OneWire",
"authors": "Paul Stoffregen",
"frameworks": "arduino"
},
"version": "3.8.1",
"frameworks": "arduino",
"platforms": "*"
}

+ 0
- 10
MK3_Firmware/lib/DallasTemperature_Modified/library.properties View File

@@ -1,10 +0,0 @@
name=DallasTemperature
version=3.8.1
author=Miles Burton <miles@mnetcs.com>, Tim Newsome <nuisance@casualhacker.net>, Guil Barros <gfbarros@bappos.com>, Rob Tillaart <rob.tillaart@gmail.com>
maintainer=Miles Burton <miles@mnetcs.com>
sentence=Arduino Library for Dallas Temperature ICs
paragraph=Supports DS18B20, DS18S20, DS1822, DS1820
category=Sensors
url=https://github.com/milesburton/Arduino-Temperature-Control-Library
architectures=*
depends=OneWire

+ 2
- 1
MK3_Firmware/platformio.ini View File

@@ -14,4 +14,5 @@ board = esp32doit-devkit-v1
framework = arduino
board_build.partitions = no_ota.csv
monitor_speed = 115200
upload_speed = 115200
upload_speed = 115200
lib_deps = david-spirulerie/La Spirulerie @ ^0.0.2

+ 5
- 2
MK3_Firmware/src/App.cpp View File

@@ -16,6 +16,7 @@ void Application::Init()
{
// Init RTOS queues
temperatureQueue = xQueueCreate(1, sizeof(float));
TSensorActiveQueue = xQueueCreate(1, sizeof(bool));
PWMActionsQueue = xQueueCreate(20, sizeof(ActuatorPWMAction));
inputQueue = xQueueCreate(5, sizeof(BtnEvent));
audioQueue = xQueueCreate(5, sizeof(Melodies));
@@ -60,7 +61,9 @@ void Application::Init()
void Application::Update()
{
// ******** App Functions ********
//WifiSystem.Update();

// authorize temperature reading only on main menu
xQueueOverwrite(TSensorActiveQueue, &isOnMainMenu);

if (modeNeedsRefresh)
{
@@ -83,7 +86,7 @@ void Application::Update()
if (pumpNominal)
Pump();

if (canGoToScreenSaver && DataSaveLoad::ReadCanScreenSave() && !m_is_in_screensaver
if (isOnMainMenu && DataSaveLoad::ReadCanScreenSave() && !m_is_in_screensaver
&& (millis() - m_last_btn_press_time) / 1000 > SECONDS_TO_SCREENSAVER)
{
digitalWrite(PIN_LCDLIGHT, LOW);


+ 2
- 2
MK3_Firmware/src/Scenes/SceneMainMenu.cpp View File

@@ -8,7 +8,7 @@ void SceneMainMenu::Initialize()
Serial.printf("<== scene Main Menu ==>\n");
Scene::Initialize();

app->canGoToScreenSaver = true;
app->isOnMainMenu = true;
app->Graphics.LoadFont("Comfortaa_26", SPIRULERIE_LIGHT, SPIRULERIE_GREEN/*SPIRULERIE_GREY*/);
app->PlayMelody(Melodies::VALID);
}
@@ -54,7 +54,7 @@ void SceneMainMenu::OnButtonClic(BTN btn)
case BTN::MIDDLE:
break;
case BTN::RIGHT:
app->canGoToScreenSaver = false;
app->isOnMainMenu = false;
app->LoadScene(new SceneTopMenu());
break;
default:


+ 0
- 2
MK3_Firmware/src/Scenes/ScenePumpUse.cpp View File

@@ -121,7 +121,6 @@ void ScenePumpUse::Initialize()
Serial.printf("<== scene ScenePumpUse ==>\n");
Scene::Initialize();

//app->canGoToScreenSaver = false;
app->pumpNominal = false; // Tell the app NOT to update the pump anymore
app->SendAction(PWMC_IO_D, 0, 500); // Tell the pump to stop

@@ -178,7 +177,6 @@ void ScenePumpUse::Update()
break;
case EXIT:
app->pumpNominal = true; // Give back control of the pump to the App
//app->canGoToScreenSaver = true;
app->LoadScene(new SceneMainMenu());
break;
default:


+ 20
- 14
MK3_Firmware/src/Tasks/TaskThermometer.cpp View File

@@ -17,6 +17,7 @@ TaskHandle_t InitThermometer()
void ThermometerTask(void *parameter)
{
QueueHandle_t temperatureQueue = Application::singleton->temperatureQueue;
QueueHandle_t TSensorActiveQueue = Application::singleton->TSensorActiveQueue;
Thermometer thermometer;

// we should fill the queue with at least an error value. Not the undefined default
@@ -31,24 +32,29 @@ void ThermometerTask(void *parameter)
delay(400);

// Wait a bit between initialization and first reading
delay(1000);
delay(5000);

// Read termperature and send it in to the RTOS queue
for (;;)
{
float tempC = -1;

// Check Temperature
tempC = thermometer.GetTemperature();
if (tempC == -1)
thermometer.StartDevice();

if (tempC < -1)
tempC = -1; // sometime gets -127 for some reason

// Send temperature to Queue
xQueueOverwrite(temperatureQueue, &tempC);

float tempC = -1;
bool canCheckTemperature = false;

// Check if authorized to get temperature (because its freezes for a few milliseconds)
xQueuePeek(TSensorActiveQueue, &canCheckTemperature, 10);
if (canCheckTemperature)
{
// Check Temperature
tempC = thermometer.GetTemperature();
if (tempC == -1)
thermometer.StartDevice();

if (tempC < -1)
tempC = -1; // sometime gets -127 for some reason

// Send temperature to Queue
xQueueOverwrite(temperatureQueue, &tempC);
}
if (tempC != -1)
delay(READING_DELAY);
else


Loading…
Cancel
Save