{ "cells": [ { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Found 2199 images belonging to 2 classes.\n", "Found 549 images belonging to 2 classes.\n", "Training samples: 2199\n", "Validation samples: 549\n" ] } ], "source": [ "import tensorflow as tf\n", "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n", "\n", "dataset_dir = 'C:/Users/vsavelev/GITHUB/DS_projet/jan24_cds_mushrooms/data'\n", "\n", "# Create ImageDataGenerator with validation split\n", "datagen = ImageDataGenerator(rescale=1.0/255, validation_split=0.2)\n", "\n", "train_generator = datagen.flow_from_directory(\n", " dataset_dir,\n", " target_size=(224, 224),\n", " batch_size=32,\n", " class_mode='categorical',\n", " subset='training' # Set as training data\n", ")\n", "\n", "validation_generator = datagen.flow_from_directory(\n", " dataset_dir,\n", " target_size=(224, 224),\n", " batch_size=32,\n", " class_mode='categorical',\n", " subset='validation' # Set as validation data\n", ")\n", "\n", "print(f'Training samples: {train_generator.samples}')\n", "print(f'Validation samples: {validation_generator.samples}')" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Model: \"sequential\"\n",
       "
\n" ], "text/plain": [ "\u001b[1mModel: \"sequential\"\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
       "┃ Layer (type)                     Output Shape                  Param # ┃\n",
       "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
       "│ resnet50 (Functional)           │ ?                      │    23,587,712 │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ global_average_pooling2d        │ ?                      │   0 (unbuilt) │\n",
       "│ (GlobalAveragePooling2D)        │                        │               │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ dense (Dense)                   │ ?                      │   0 (unbuilt) │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ dropout (Dropout)               │ ?                      │   0 (unbuilt) │\n",
       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
       "│ dense_1 (Dense)                 │ ?                      │   0 (unbuilt) │\n",
       "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
       "
\n" ], "text/plain": [ "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", "│ resnet50 (\u001b[38;5;33mFunctional\u001b[0m) │ ? │ \u001b[38;5;34m23,587,712\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ global_average_pooling2d │ ? │ \u001b[38;5;34m0\u001b[0m (unbuilt) │\n", "│ (\u001b[38;5;33mGlobalAveragePooling2D\u001b[0m) │ │ │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dense (\u001b[38;5;33mDense\u001b[0m) │ ? │ \u001b[38;5;34m0\u001b[0m (unbuilt) │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dropout (\u001b[38;5;33mDropout\u001b[0m) │ ? │ \u001b[38;5;34m0\u001b[0m (unbuilt) │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dense_1 (\u001b[38;5;33mDense\u001b[0m) │ ? │ \u001b[38;5;34m0\u001b[0m (unbuilt) │\n", "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
 Total params: 23,587,712 (89.98 MB)\n",
       "
\n" ], "text/plain": [ "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m23,587,712\u001b[0m (89.98 MB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
 Trainable params: 0 (0.00 B)\n",
       "
\n" ], "text/plain": [ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
 Non-trainable params: 23,587,712 (89.98 MB)\n",
       "
\n" ], "text/plain": [ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m23,587,712\u001b[0m (89.98 MB)\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from tensorflow.keras.applications import ResNet50\n", "from tensorflow.keras import layers, models\n", "\n", "# Load and Configure the Pre-trained ResNet50 Model\n", "base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3))\n", "\"\"\"\n", "weights='imagenet': Loads the pre-trained weights from the ImageNet dataset.\n", "include_top=False: Excludes the top fully-connected layers of the ResNet50 model, enabling you to add your own custom layers.\n", "input_shape=(224, 224, 3): Specifies the input shape of the images (224x224 pixels, with 3 color channels - RGB).\n", "\"\"\"\n", "\n", "# Freeze the base model (to freeze the pre-trained layers)\n", "base_model.trainable = False\n", "\n", "# Add custom layers on top of the base model\n", "model = models.Sequential([ #allows to stack layers linearly\n", " base_model,\n", " layers.GlobalAveragePooling2D(),\n", " layers.Dense(1024, activation='relu'),\n", " layers.Dropout(0.5),\n", " layers.Dense(train_generator.num_classes, activation='softmax')\n", "])\n", "\n", "\"\"\"\n", "GlobalAveragePooling2D(): Reduces each feature map to a single number by taking the average, \n", "which helps to reduce the size of the model and prevent overfitting.\n", "Dense(1024, activation='relu'): Adds a fully connected layer with 1024 units and ReLU activation function.\n", "Dropout(0.5): Adds a dropout layer with a 50% dropout rate to prevent overfitting by randomly setting half of the input units \n", "to 0 at each update during training.\n", "Dense(train_generator.num_classes, activation='softmax'): \n", "Adds the final output layer with units equal to the number of classes in your dataset, using the softmax activation function for multi-class classification.\n", "\"\"\"\n", "model.compile(optimizer=tf.keras.optimizers.Adam(),\n", " loss='categorical_crossentropy',\n", " metrics=['accuracy'])\n", "\n", "\"\"\"\n", "optimizer=tf.keras.optimizers.Adam(): Uses the Adam optimizer, which is an adaptive learning rate optimization algorithm.\n", "loss='categorical_crossentropy': Uses categorical cross-entropy as the loss function, suitable for multi-class classification.\n", "metrics=['accuracy']: Tracks accuracy as the metric to evaluate the model's performance during training and testing.\n", "\"\"\"\n", "model.summary()\n", "\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/10\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\vsavelev\\AppData\\Local\\anaconda3\\Lib\\site-packages\\keras\\src\\trainers\\data_adapters\\py_dataset_adapter.py:121: UserWarning: Your `PyDataset` class should call `super().__init__(**kwargs)` in its constructor. `**kwargs` can include `workers`, `use_multiprocessing`, `max_queue_size`. Do not pass these arguments to `fit()`, as they will be ignored.\n", " self._warn_if_super_not_called()\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[1m68/68\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m135s\u001b[0m 2s/step - accuracy: 0.8657 - loss: 0.5402 - val_accuracy: 0.8860 - val_loss: 0.3811\n", "Epoch 2/10\n", "\u001b[1m 1/68\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:36\u001b[0m 1s/step - accuracy: 0.8125 - loss: 0.5545" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\vsavelev\\AppData\\Local\\anaconda3\\Lib\\contextlib.py:158: UserWarning: Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches. You may need to use the `.repeat()` function when building your dataset.\n", " self.gen.throw(typ, value, traceback)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[1m68/68\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.8125 - loss: 0.5545 - val_accuracy: 1.0000 - val_loss: 0.2601\n", "Epoch 3/10\n", "\u001b[1m68/68\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m147s\u001b[0m 2s/step - accuracy: 0.8812 - loss: 0.3830 - val_accuracy: 0.8860 - val_loss: 0.3604\n", "Epoch 4/10\n", "\u001b[1m68/68\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 7ms/step - accuracy: 0.9375 - loss: 0.2276 - val_accuracy: 1.0000 - val_loss: 0.1036\n", "Epoch 5/10\n", "\u001b[1m68/68\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m186s\u001b[0m 3s/step - accuracy: 0.8776 - loss: 0.3826 - val_accuracy: 0.8860 - val_loss: 0.3568\n", "Epoch 6/10\n", "\u001b[1m68/68\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 9ms/step - accuracy: 0.9688 - loss: 0.1941 - val_accuracy: 1.0000 - val_loss: 0.1264\n", "Epoch 7/10\n", "\u001b[1m68/68\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m199s\u001b[0m 3s/step - accuracy: 0.8844 - loss: 0.3665 - val_accuracy: 0.8879 - val_loss: 0.3532\n", "Epoch 8/10\n", "\u001b[1m68/68\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 10ms/step - accuracy: 0.9062 - loss: 0.2978 - val_accuracy: 0.8000 - val_loss: 0.5479\n", "Epoch 9/10\n", "\u001b[1m68/68\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m190s\u001b[0m 3s/step - accuracy: 0.8929 - loss: 0.3426 - val_accuracy: 0.8879 - val_loss: 0.3531\n", "Epoch 10/10\n", "\u001b[1m68/68\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 10ms/step - accuracy: 0.8125 - loss: 0.4996 - val_accuracy: 0.8000 - val_loss: 0.5142\n" ] } ], "source": [ "history = model.fit(\n", " train_generator,\n", " steps_per_epoch=train_generator.samples // train_generator.batch_size,\n", " validation_data=validation_generator,\n", " validation_steps=validation_generator.samples // validation_generator.batch_size,\n", " epochs=10\n", ")\n", "\n", "#This specifies the number of complete passes through the training dataset. Here, the model will train for 10 epochs." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/10\n", "\u001b[1m68/68\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m330s\u001b[0m 4s/step - accuracy: 0.8855 - loss: 0.4046 - val_accuracy: 0.8879 - val_loss: 0.3791\n", "Epoch 2/10\n", "\u001b[1m68/68\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 10ms/step - accuracy: 0.8750 - loss: 0.3539 - val_accuracy: 0.8000 - val_loss: 0.5808\n", "Epoch 3/10\n", "\u001b[1m68/68\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m289s\u001b[0m 4s/step - accuracy: 0.8960 - loss: 0.2870 - val_accuracy: 0.8860 - val_loss: 0.3903\n", "Epoch 4/10\n", "\u001b[1m68/68\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 7ms/step - accuracy: 0.9688 - loss: 0.1397 - val_accuracy: 1.0000 - val_loss: 0.2601\n", "Epoch 5/10\n", "\u001b[1m68/68\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m283s\u001b[0m 4s/step - accuracy: 0.9162 - loss: 0.2052 - val_accuracy: 0.8787 - val_loss: 0.4098\n", "Epoch 6/10\n", "\u001b[1m68/68\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 9ms/step - accuracy: 0.8438 - loss: 0.3068 - val_accuracy: 0.6000 - val_loss: 0.7204\n", "Epoch 7/10\n", "\u001b[1m68/68\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m290s\u001b[0m 4s/step - accuracy: 0.9429 - loss: 0.1480 - val_accuracy: 0.8382 - val_loss: 0.4598\n", "Epoch 8/10\n", "\u001b[1m68/68\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 6ms/step - accuracy: 0.9062 - loss: 0.1594 - val_accuracy: 1.0000 - val_loss: 0.2145\n", "Epoch 9/10\n", "\u001b[1m68/68\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m299s\u001b[0m 4s/step - accuracy: 0.9658 - loss: 0.1009 - val_accuracy: 0.8548 - val_loss: 0.4892\n", "Epoch 10/10\n", "\u001b[1m68/68\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 6ms/step - accuracy: 1.0000 - loss: 0.0651 - val_accuracy: 0.8000 - val_loss: 0.9206\n" ] } ], "source": [ "# Unfreeze some layers\n", "base_model.trainable = True\n", "fine_tune_at = 100 # fine-tune from this layer onwards\n", "\n", "for layer in base_model.layers[:fine_tune_at]:\n", " layer.trainable = False\n", "\n", "model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=1e-5),\n", " loss='categorical_crossentropy', #The categorical cross-entropy loss function is used because this is a multi-class classification problem\n", " metrics=['accuracy'])\n", "\n", "\"\"\"\n", "The Adam optimizer is used with a very small learning rate (1e-5). Fine-tuning typically \n", "uses a smaller learning rate to prevent large updates to the weights, which could potentially destroy the learned features in the pre-trained model.\n", "\"\"\"\n", "history_fine = model.fit(\n", " train_generator,\n", " steps_per_epoch=train_generator.samples // train_generator.batch_size,\n", " validation_data=validation_generator,\n", " validation_steps=validation_generator.samples // validation_generator.batch_size,\n", " epochs=10\n", ")\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[1m18/18\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m36s\u001b[0m 2s/step - accuracy: 0.8559 - loss: 0.4854\n", "Validation loss: 0.4950728416442871\n", "Validation accuracy: 0.8561019897460938\n" ] } ], "source": [ "loss, accuracy = model.evaluate(validation_generator)\n", "print(f'Validation loss: {loss}')\n", "print(f'Validation accuracy: {accuracy}')\n" ] } ], "metadata": { "language_info": { "name": "python" } }, "nbformat": 4, "nbformat_minor": 2 }