|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336 |
- {
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Found 2199 images belonging to 2 classes.\n",
- "Found 549 images belonging to 2 classes.\n",
- "Training samples: 2199\n",
- "Validation samples: 549\n"
- ]
- }
- ],
- "source": [
- "import tensorflow as tf\n",
- "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n",
- "\n",
- "dataset_dir = 'C:/Users/vsavelev/GITHUB/DS_projet/jan24_cds_mushrooms/data'\n",
- "\n",
- "# Create ImageDataGenerator with validation split\n",
- "datagen = ImageDataGenerator(rescale=1.0/255, validation_split=0.2)\n",
- "\n",
- "train_generator = datagen.flow_from_directory(\n",
- " dataset_dir,\n",
- " target_size=(224, 224),\n",
- " batch_size=32,\n",
- " class_mode='categorical',\n",
- " subset='training' # Set as training data\n",
- ")\n",
- "\n",
- "validation_generator = datagen.flow_from_directory(\n",
- " dataset_dir,\n",
- " target_size=(224, 224),\n",
- " batch_size=32,\n",
- " class_mode='categorical',\n",
- " subset='validation' # Set as validation data\n",
- ")\n",
- "\n",
- "print(f'Training samples: {train_generator.samples}')\n",
- "print(f'Validation samples: {validation_generator.samples}')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [],
- "source": [
- "from tensorflow.keras.applications import ResNet50\n",
- "from tensorflow.keras import layers, models\n",
- "import keras_tuner as kt\n",
- "\n",
- "def build_model(hp):\n",
- " base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3))\n",
- " base_model.trainable = False\n",
- "\n",
- " model = models.Sequential()\n",
- " model.add(base_model)\n",
- " model.add(layers.GlobalAveragePooling2D())\n",
- " model.add(layers.Dense(hp.Int('units', min_value=256, max_value=1024, step=256), activation='relu'))\n",
- " model.add(layers.Dropout(hp.Float('dropout', min_value=0.2, max_value=0.5, step=0.1)))\n",
- " model.add(layers.Dense(train_generator.num_classes, activation='softmax'))\n",
- " \n",
- " model.compile(optimizer=tf.keras.optimizers.Adam(hp.Choice('learning_rate', [1e-2, 1e-3, 1e-4])),\n",
- " loss='categorical_crossentropy',\n",
- " metrics=['accuracy'])\n",
- " \n",
- " return model\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [],
- "source": [
- "#Set Up the Tuner\n",
- "\n",
- "tuner = kt.RandomSearch(\n",
- " build_model,\n",
- " objective='val_accuracy',\n",
- " max_trials=5,\n",
- " executions_per_trial=3,\n",
- " directory='my_dir',\n",
- " project_name='mushroom_classification'\n",
- ")\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Trial 5 Complete [05h 32m 33s]\n",
- "val_accuracy: 0.8870673775672913\n",
- "\n",
- "Best val_accuracy So Far: 0.8870673775672913\n",
- "Total elapsed time: 11h 14m 56s\n"
- ]
- }
- ],
- "source": [
- "tuner.search(train_generator, epochs=10, validation_data=validation_generator)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n",
- "The hyperparameter search is complete. The optimal number of units in the dense layer is 768.\n",
- "The optimal learning rate for the optimizer is 0.001.\n",
- "\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">Model: \"sequential_1\"</span>\n",
- "</pre>\n"
- ],
- "text/plain": [
- "\u001b[1mModel: \"sequential_1\"\u001b[0m\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
- "┃<span style=\"font-weight: bold\"> Layer (type) </span>┃<span style=\"font-weight: bold\"> Output Shape </span>┃<span style=\"font-weight: bold\"> Param # </span>┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
- "│ resnet50 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Functional</span>) │ ? │ <span style=\"color: #00af00; text-decoration-color: #00af00\">23,587,712</span> │\n",
- "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
- "│ global_average_pooling2d_1 │ ? │ <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> (unbuilt) │\n",
- "│ (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">GlobalAveragePooling2D</span>) │ │ │\n",
- "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
- "│ dense_2 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dense</span>) │ ? │ <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> (unbuilt) │\n",
- "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
- "│ dropout_1 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dropout</span>) │ ? │ <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> (unbuilt) │\n",
- "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
- "│ dense_3 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dense</span>) │ ? │ <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> (unbuilt) │\n",
- "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
- "</pre>\n"
- ],
- "text/plain": [
- "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
- "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
- "│ resnet50 (\u001b[38;5;33mFunctional\u001b[0m) │ ? │ \u001b[38;5;34m23,587,712\u001b[0m │\n",
- "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
- "│ global_average_pooling2d_1 │ ? │ \u001b[38;5;34m0\u001b[0m (unbuilt) │\n",
- "│ (\u001b[38;5;33mGlobalAveragePooling2D\u001b[0m) │ │ │\n",
- "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
- "│ dense_2 (\u001b[38;5;33mDense\u001b[0m) │ ? │ \u001b[38;5;34m0\u001b[0m (unbuilt) │\n",
- "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
- "│ dropout_1 (\u001b[38;5;33mDropout\u001b[0m) │ ? │ \u001b[38;5;34m0\u001b[0m (unbuilt) │\n",
- "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
- "│ dense_3 (\u001b[38;5;33mDense\u001b[0m) │ ? │ \u001b[38;5;34m0\u001b[0m (unbuilt) │\n",
- "└─────────────────────────────────┴────────────────────────┴───────────────┘\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Total params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">23,587,712</span> (89.98 MB)\n",
- "</pre>\n"
- ],
- "text/plain": [
- "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m23,587,712\u001b[0m (89.98 MB)\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Trainable params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> (0.00 B)\n",
- "</pre>\n"
- ],
- "text/plain": [
- "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Non-trainable params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">23,587,712</span> (89.98 MB)\n",
- "</pre>\n"
- ],
- "text/plain": [
- "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m23,587,712\u001b[0m (89.98 MB)\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "best_hps = tuner.get_best_hyperparameters(num_trials=1)[0]\n",
- "\n",
- "print(f\"\"\"\n",
- "The hyperparameter search is complete. The optimal number of units in the dense layer is {best_hps.get('units')}.\n",
- "The optimal learning rate for the optimizer is {best_hps.get('learning_rate')}.\n",
- "\"\"\")\n",
- "\n",
- "# Build the best model\n",
- "model = tuner.hypermodel.build(best_hps)\n",
- "model.summary()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 1/10\n",
- "\u001b[1m68/68\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m164s\u001b[0m 2s/step - accuracy: 0.8856 - loss: 0.4458 - val_accuracy: 0.8860 - val_loss: 0.3645\n",
- "Epoch 2/10\n",
- "\u001b[1m 1/68\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:57\u001b[0m 2s/step - accuracy: 0.9062 - loss: 0.3521"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "c:\\Users\\vsavelev\\AppData\\Local\\anaconda3\\Lib\\contextlib.py:158: UserWarning: Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches. You may need to use the `.repeat()` function when building your dataset.\n",
- " self.gen.throw(typ, value, traceback)\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\u001b[1m68/68\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 11ms/step - accuracy: 0.9062 - loss: 0.3521 - val_accuracy: 1.0000 - val_loss: 0.0784\n",
- "Epoch 3/10\n",
- "\u001b[1m68/68\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m153s\u001b[0m 2s/step - accuracy: 0.8923 - loss: 0.3465 - val_accuracy: 0.8879 - val_loss: 0.3535\n",
- "Epoch 4/10\n",
- "\u001b[1m68/68\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 6ms/step - accuracy: 0.8750 - loss: 0.4432 - val_accuracy: 0.8000 - val_loss: 0.5806\n",
- "Epoch 5/10\n",
- "\u001b[1m68/68\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m151s\u001b[0m 2s/step - accuracy: 0.8817 - loss: 0.3742 - val_accuracy: 0.8860 - val_loss: 0.3608\n",
- "Epoch 6/10\n",
- "\u001b[1m68/68\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 8ms/step - accuracy: 0.9375 - loss: 0.2319 - val_accuracy: 1.0000 - val_loss: 0.0935\n",
- "Epoch 7/10\n",
- "\u001b[1m68/68\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m156s\u001b[0m 2s/step - accuracy: 0.8882 - loss: 0.3576 - val_accuracy: 0.8860 - val_loss: 0.3543\n",
- "Epoch 8/10\n",
- "\u001b[1m68/68\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 7ms/step - accuracy: 0.8438 - loss: 0.4161 - val_accuracy: 1.0000 - val_loss: 0.1267\n",
- "Epoch 9/10\n",
- "\u001b[1m68/68\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m154s\u001b[0m 2s/step - accuracy: 0.8969 - loss: 0.3322 - val_accuracy: 0.8860 - val_loss: 0.3748\n",
- "Epoch 10/10\n",
- "\u001b[1m68/68\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 6ms/step - accuracy: 0.9375 - loss: 0.2687 - val_accuracy: 1.0000 - val_loss: 0.1681\n"
- ]
- }
- ],
- "source": [
- "history = model.fit(\n",
- " train_generator,\n",
- " steps_per_epoch=train_generator.samples // train_generator.batch_size,\n",
- " validation_data=validation_generator,\n",
- " validation_steps=validation_generator.samples // validation_generator.batch_size,\n",
- " epochs=10\n",
- ")\n",
- "\n",
- "#This specifies the number of complete passes through the training dataset. Here, the model will train for 10 epochs."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\u001b[1m18/18\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m30s\u001b[0m 2s/step - accuracy: 0.8850 - loss: 0.3732\n",
- "Validation loss: 0.36864525079727173\n",
- "Validation accuracy: 0.8870673775672913\n"
- ]
- }
- ],
- "source": [
- "loss, accuracy = model.evaluate(validation_generator)\n",
- "print(f'Validation loss: {loss}')\n",
- "print(f'Validation accuracy: {accuracy}')\n"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "base",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "name": "python",
- "version": "3.11.7"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
- }
|