|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107 |
- """
- Create SQL statements for QuerySets.
-
- The code in here encapsulates all of the SQL construction so that QuerySets
- themselves do not have to (and could be backed by things other than SQL
- databases). The abstraction barrier only works one way: this module has to know
- all about the internals of models in order to get the information it needs.
- """
- import copy
- import warnings
- from collections import Counter, Iterator, Mapping, OrderedDict
- from itertools import chain, count, product
- from string import ascii_uppercase
-
- from django.core.exceptions import FieldDoesNotExist, FieldError
- from django.db import DEFAULT_DB_ALIAS, connections
- from django.db.models.aggregates import Count
- from django.db.models.constants import LOOKUP_SEP
- from django.db.models.expressions import Col, Ref
- from django.db.models.fields.related_lookups import MultiColSource
- from django.db.models.query_utils import (
- PathInfo, Q, check_rel_lookup_compatibility, refs_expression,
- )
- from django.db.models.sql.constants import (
- INNER, LOUTER, ORDER_DIR, ORDER_PATTERN, QUERY_TERMS, SINGLE,
- )
- from django.db.models.sql.datastructures import (
- BaseTable, Empty, EmptyResultSet, Join, MultiJoin,
- )
- from django.db.models.sql.where import (
- AND, OR, ExtraWhere, NothingNode, WhereNode,
- )
- from django.utils import six
- from django.utils.deprecation import RemovedInDjango110Warning
- from django.utils.encoding import force_text
- from django.utils.tree import Node
-
- __all__ = ['Query', 'RawQuery']
-
-
- def get_field_names_from_opts(opts):
- return set(chain.from_iterable(
- (f.name, f.attname) if f.concrete else (f.name,)
- for f in opts.get_fields()
- ))
-
-
- class RawQuery(object):
- """
- A single raw SQL query
- """
-
- def __init__(self, sql, using, params=None, context=None):
- self.params = params or ()
- self.sql = sql
- self.using = using
- self.cursor = None
-
- # Mirror some properties of a normal query so that
- # the compiler can be used to process results.
- self.low_mark, self.high_mark = 0, None # Used for offset/limit
- self.extra_select = {}
- self.annotation_select = {}
- self.context = context or {}
-
- def clone(self, using):
- return RawQuery(self.sql, using, params=self.params, context=self.context.copy())
-
- def get_columns(self):
- if self.cursor is None:
- self._execute_query()
- converter = connections[self.using].introspection.column_name_converter
- return [converter(column_meta[0])
- for column_meta in self.cursor.description]
-
- def __iter__(self):
- # Always execute a new query for a new iterator.
- # This could be optimized with a cache at the expense of RAM.
- self._execute_query()
- if not connections[self.using].features.can_use_chunked_reads:
- # If the database can't use chunked reads we need to make sure we
- # evaluate the entire query up front.
- result = list(self.cursor)
- else:
- result = self.cursor
- return iter(result)
-
- def __repr__(self):
- return "<RawQuery: %s>" % self
-
- @property
- def params_type(self):
- return dict if isinstance(self.params, Mapping) else tuple
-
- def __str__(self):
- return self.sql % self.params_type(self.params)
-
- def _execute_query(self):
- connection = connections[self.using]
-
- # Adapt parameters to the database, as much as possible considering
- # that the target type isn't known. See #17755.
- params_type = self.params_type
- adapter = connection.ops.adapt_unknown_value
- if params_type is tuple:
- params = tuple(adapter(val) for val in self.params)
- elif params_type is dict:
- params = dict((key, adapter(val)) for key, val in six.iteritems(self.params))
- else:
- raise RuntimeError("Unexpected params type: %s" % params_type)
-
- self.cursor = connection.cursor()
- self.cursor.execute(self.sql, params)
-
-
- class Query(object):
- """
- A single SQL query.
- """
-
- alias_prefix = 'T'
- subq_aliases = frozenset([alias_prefix])
- query_terms = QUERY_TERMS
-
- compiler = 'SQLCompiler'
-
- def __init__(self, model, where=WhereNode):
- self.model = model
- self.alias_refcount = {}
- # alias_map is the most important data structure regarding joins.
- # It's used for recording which joins exist in the query and what
- # types they are. The key is the alias of the joined table (possibly
- # the table name) and the value is a Join-like object (see
- # sql.datastructures.Join for more information).
- self.alias_map = {}
- # Sometimes the query contains references to aliases in outer queries (as
- # a result of split_exclude). Correct alias quoting needs to know these
- # aliases too.
- self.external_aliases = set()
- self.table_map = {} # Maps table names to list of aliases.
- self.default_cols = True
- self.default_ordering = True
- self.standard_ordering = True
- self.used_aliases = set()
- self.filter_is_sticky = False
-
- # SQL-related attributes
- # Select and related select clauses are expressions to use in the
- # SELECT clause of the query.
- # The select is used for cases where we want to set up the select
- # clause to contain other than default fields (values(), subqueries...)
- # Note that annotations go to annotations dictionary.
- self.select = []
- self.tables = [] # Aliases in the order they are created.
- self.where = where()
- self.where_class = where
- # The group_by attribute can have one of the following forms:
- # - None: no group by at all in the query
- # - A list of expressions: group by (at least) those expressions.
- # String refs are also allowed for now.
- # - True: group by all select fields of the model
- # See compiler.get_group_by() for details.
- self.group_by = None
- self.order_by = []
- self.low_mark, self.high_mark = 0, None # Used for offset/limit
- self.distinct = False
- self.distinct_fields = []
- self.select_for_update = False
- self.select_for_update_nowait = False
-
- self.select_related = False
- # Arbitrary limit for select_related to prevents infinite recursion.
- self.max_depth = 5
-
- # Holds the selects defined by a call to values() or values_list()
- # excluding annotation_select and extra_select.
- self.values_select = []
-
- # SQL annotation-related attributes
- # The _annotations will be an OrderedDict when used. Due to the cost
- # of creating OrderedDict this attribute is created lazily (in
- # self.annotations property).
- self._annotations = None # Maps alias -> Annotation Expression
- self.annotation_select_mask = None
- self._annotation_select_cache = None
-
- # These are for extensions. The contents are more or less appended
- # verbatim to the appropriate clause.
- # The _extra attribute is an OrderedDict, lazily created similarly to
- # .annotations
- self._extra = None # Maps col_alias -> (col_sql, params).
- self.extra_select_mask = None
- self._extra_select_cache = None
-
- self.extra_tables = ()
- self.extra_order_by = ()
-
- # A tuple that is a set of model field names and either True, if these
- # are the fields to defer, or False if these are the only fields to
- # load.
- self.deferred_loading = (set(), True)
-
- self.context = {}
-
- @property
- def extra(self):
- if self._extra is None:
- self._extra = OrderedDict()
- return self._extra
-
- @property
- def annotations(self):
- if self._annotations is None:
- self._annotations = OrderedDict()
- return self._annotations
-
- @property
- def aggregates(self):
- warnings.warn(
- "The aggregates property is deprecated. Use annotations instead.",
- RemovedInDjango110Warning, stacklevel=2)
- return self.annotations
-
- def __str__(self):
- """
- Returns the query as a string of SQL with the parameter values
- substituted in (use sql_with_params() to see the unsubstituted string).
-
- Parameter values won't necessarily be quoted correctly, since that is
- done by the database interface at execution time.
- """
- sql, params = self.sql_with_params()
- return sql % params
-
- def sql_with_params(self):
- """
- Returns the query as an SQL string and the parameters that will be
- substituted into the query.
- """
- return self.get_compiler(DEFAULT_DB_ALIAS).as_sql()
-
- def __deepcopy__(self, memo):
- result = self.clone(memo=memo)
- memo[id(self)] = result
- return result
-
- def _prepare(self, field):
- return self
-
- def get_compiler(self, using=None, connection=None):
- if using is None and connection is None:
- raise ValueError("Need either using or connection")
- if using:
- connection = connections[using]
- return connection.ops.compiler(self.compiler)(self, connection, using)
-
- def get_meta(self):
- """
- Returns the Options instance (the model._meta) from which to start
- processing. Normally, this is self.model._meta, but it can be changed
- by subclasses.
- """
- return self.model._meta
-
- def clone(self, klass=None, memo=None, **kwargs):
- """
- Creates a copy of the current instance. The 'kwargs' parameter can be
- used by clients to update attributes after copying has taken place.
- """
- obj = Empty()
- obj.__class__ = klass or self.__class__
- obj.model = self.model
- obj.alias_refcount = self.alias_refcount.copy()
- obj.alias_map = self.alias_map.copy()
- obj.external_aliases = self.external_aliases.copy()
- obj.table_map = self.table_map.copy()
- obj.default_cols = self.default_cols
- obj.default_ordering = self.default_ordering
- obj.standard_ordering = self.standard_ordering
- obj.select = self.select[:]
- obj.tables = self.tables[:]
- obj.where = self.where.clone()
- obj.where_class = self.where_class
- if self.group_by is None:
- obj.group_by = None
- elif self.group_by is True:
- obj.group_by = True
- else:
- obj.group_by = self.group_by[:]
- obj.order_by = self.order_by[:]
- obj.low_mark, obj.high_mark = self.low_mark, self.high_mark
- obj.distinct = self.distinct
- obj.distinct_fields = self.distinct_fields[:]
- obj.select_for_update = self.select_for_update
- obj.select_for_update_nowait = self.select_for_update_nowait
- obj.select_related = self.select_related
- obj.values_select = self.values_select[:]
- obj._annotations = self._annotations.copy() if self._annotations is not None else None
- if self.annotation_select_mask is None:
- obj.annotation_select_mask = None
- else:
- obj.annotation_select_mask = self.annotation_select_mask.copy()
- # _annotation_select_cache cannot be copied, as doing so breaks the
- # (necessary) state in which both annotations and
- # _annotation_select_cache point to the same underlying objects.
- # It will get re-populated in the cloned queryset the next time it's
- # used.
- obj._annotation_select_cache = None
- obj.max_depth = self.max_depth
- obj._extra = self._extra.copy() if self._extra is not None else None
- if self.extra_select_mask is None:
- obj.extra_select_mask = None
- else:
- obj.extra_select_mask = self.extra_select_mask.copy()
- if self._extra_select_cache is None:
- obj._extra_select_cache = None
- else:
- obj._extra_select_cache = self._extra_select_cache.copy()
- obj.extra_tables = self.extra_tables
- obj.extra_order_by = self.extra_order_by
- obj.deferred_loading = copy.copy(self.deferred_loading[0]), self.deferred_loading[1]
- if self.filter_is_sticky and self.used_aliases:
- obj.used_aliases = self.used_aliases.copy()
- else:
- obj.used_aliases = set()
- obj.filter_is_sticky = False
- if 'alias_prefix' in self.__dict__:
- obj.alias_prefix = self.alias_prefix
- if 'subq_aliases' in self.__dict__:
- obj.subq_aliases = self.subq_aliases.copy()
-
- obj.__dict__.update(kwargs)
- if hasattr(obj, '_setup_query'):
- obj._setup_query()
- obj.context = self.context.copy()
- return obj
-
- def add_context(self, key, value):
- self.context[key] = value
-
- def get_context(self, key, default=None):
- return self.context.get(key, default)
-
- def relabeled_clone(self, change_map):
- clone = self.clone()
- clone.change_aliases(change_map)
- return clone
-
- def rewrite_cols(self, annotation, col_cnt):
- # We must make sure the inner query has the referred columns in it.
- # If we are aggregating over an annotation, then Django uses Ref()
- # instances to note this. However, if we are annotating over a column
- # of a related model, then it might be that column isn't part of the
- # SELECT clause of the inner query, and we must manually make sure
- # the column is selected. An example case is:
- # .aggregate(Sum('author__awards'))
- # Resolving this expression results in a join to author, but there
- # is no guarantee the awards column of author is in the select clause
- # of the query. Thus we must manually add the column to the inner
- # query.
- orig_exprs = annotation.get_source_expressions()
- new_exprs = []
- for expr in orig_exprs:
- if isinstance(expr, Ref):
- # Its already a Ref to subquery (see resolve_ref() for
- # details)
- new_exprs.append(expr)
- elif isinstance(expr, Col):
- # Reference to column. Make sure the referenced column
- # is selected.
- col_cnt += 1
- col_alias = '__col%d' % col_cnt
- self.annotations[col_alias] = expr
- self.append_annotation_mask([col_alias])
- new_exprs.append(Ref(col_alias, expr))
- else:
- # Some other expression not referencing database values
- # directly. Its subexpression might contain Cols.
- new_expr, col_cnt = self.rewrite_cols(expr, col_cnt)
- new_exprs.append(new_expr)
- annotation.set_source_expressions(new_exprs)
- return annotation, col_cnt
-
- def get_aggregation(self, using, added_aggregate_names):
- """
- Returns the dictionary with the values of the existing aggregations.
- """
- if not self.annotation_select:
- return {}
- has_limit = self.low_mark != 0 or self.high_mark is not None
- has_existing_annotations = any(
- annotation for alias, annotation
- in self.annotations.items()
- if alias not in added_aggregate_names
- )
- # Decide if we need to use a subquery.
- #
- # Existing annotations would cause incorrect results as get_aggregation()
- # must produce just one result and thus must not use GROUP BY. But we
- # aren't smart enough to remove the existing annotations from the
- # query, so those would force us to use GROUP BY.
- #
- # If the query has limit or distinct, then those operations must be
- # done in a subquery so that we are aggregating on the limit and/or
- # distinct results instead of applying the distinct and limit after the
- # aggregation.
- if (isinstance(self.group_by, list) or has_limit or has_existing_annotations or
- self.distinct):
- from django.db.models.sql.subqueries import AggregateQuery
- outer_query = AggregateQuery(self.model)
- inner_query = self.clone()
- inner_query.select_for_update = False
- inner_query.select_related = False
- if not has_limit and not self.distinct_fields:
- # Queries with distinct_fields need ordering and when a limit
- # is applied we must take the slice from the ordered query.
- # Otherwise no need for ordering.
- inner_query.clear_ordering(True)
- if not inner_query.distinct:
- # If the inner query uses default select and it has some
- # aggregate annotations, then we must make sure the inner
- # query is grouped by the main model's primary key. However,
- # clearing the select clause can alter results if distinct is
- # used.
- if inner_query.default_cols and has_existing_annotations:
- inner_query.group_by = [self.model._meta.pk.get_col(inner_query.get_initial_alias())]
- inner_query.default_cols = False
-
- relabels = {t: 'subquery' for t in inner_query.tables}
- relabels[None] = 'subquery'
- # Remove any aggregates marked for reduction from the subquery
- # and move them to the outer AggregateQuery.
- col_cnt = 0
- for alias, expression in list(inner_query.annotation_select.items()):
- if expression.is_summary:
- expression, col_cnt = inner_query.rewrite_cols(expression, col_cnt)
- outer_query.annotations[alias] = expression.relabeled_clone(relabels)
- del inner_query.annotations[alias]
- # Make sure the annotation_select wont use cached results.
- inner_query.set_annotation_mask(inner_query.annotation_select_mask)
- if inner_query.select == [] and not inner_query.default_cols and not inner_query.annotation_select_mask:
- # In case of Model.objects[0:3].count(), there would be no
- # field selected in the inner query, yet we must use a subquery.
- # So, make sure at least one field is selected.
- inner_query.select = [self.model._meta.pk.get_col(inner_query.get_initial_alias())]
- try:
- outer_query.add_subquery(inner_query, using)
- except EmptyResultSet:
- return {
- alias: None
- for alias in outer_query.annotation_select
- }
- else:
- outer_query = self
- self.select = []
- self.default_cols = False
- self._extra = {}
-
- outer_query.clear_ordering(True)
- outer_query.clear_limits()
- outer_query.select_for_update = False
- outer_query.select_related = False
- compiler = outer_query.get_compiler(using)
- result = compiler.execute_sql(SINGLE)
- if result is None:
- result = [None for q in outer_query.annotation_select.items()]
-
- converters = compiler.get_converters(outer_query.annotation_select.values())
- result = compiler.apply_converters(result, converters)
-
- return {
- alias: val
- for (alias, annotation), val
- in zip(outer_query.annotation_select.items(), result)
- }
-
- def get_count(self, using):
- """
- Performs a COUNT() query using the current filter constraints.
- """
- obj = self.clone()
- obj.add_annotation(Count('*'), alias='__count', is_summary=True)
- number = obj.get_aggregation(using, ['__count'])['__count']
- if number is None:
- number = 0
- return number
-
- def has_filters(self):
- return self.where
-
- def has_results(self, using):
- q = self.clone()
- if not q.distinct:
- if q.group_by is True:
- q.add_fields((f.attname for f in self.model._meta.concrete_fields), False)
- q.set_group_by()
- q.clear_select_clause()
- q.clear_ordering(True)
- q.set_limits(high=1)
- compiler = q.get_compiler(using=using)
- return compiler.has_results()
-
- def combine(self, rhs, connector):
- """
- Merge the 'rhs' query into the current one (with any 'rhs' effects
- being applied *after* (that is, "to the right of") anything in the
- current query. 'rhs' is not modified during a call to this function.
-
- The 'connector' parameter describes how to connect filters from the
- 'rhs' query.
- """
- assert self.model == rhs.model, \
- "Cannot combine queries on two different base models."
- assert self.can_filter(), \
- "Cannot combine queries once a slice has been taken."
- assert self.distinct == rhs.distinct, \
- "Cannot combine a unique query with a non-unique query."
- assert self.distinct_fields == rhs.distinct_fields, \
- "Cannot combine queries with different distinct fields."
-
- # Work out how to relabel the rhs aliases, if necessary.
- change_map = {}
- conjunction = (connector == AND)
-
- # Determine which existing joins can be reused. When combining the
- # query with AND we must recreate all joins for m2m filters. When
- # combining with OR we can reuse joins. The reason is that in AND
- # case a single row can't fulfill a condition like:
- # revrel__col=1 & revrel__col=2
- # But, there might be two different related rows matching this
- # condition. In OR case a single True is enough, so single row is
- # enough, too.
- #
- # Note that we will be creating duplicate joins for non-m2m joins in
- # the AND case. The results will be correct but this creates too many
- # joins. This is something that could be fixed later on.
- reuse = set() if conjunction else set(self.tables)
- # Base table must be present in the query - this is the same
- # table on both sides.
- self.get_initial_alias()
- joinpromoter = JoinPromoter(connector, 2, False)
- joinpromoter.add_votes(
- j for j in self.alias_map if self.alias_map[j].join_type == INNER)
- rhs_votes = set()
- # Now, add the joins from rhs query into the new query (skipping base
- # table).
- for alias in rhs.tables[1:]:
- join = rhs.alias_map[alias]
- # If the left side of the join was already relabeled, use the
- # updated alias.
- join = join.relabeled_clone(change_map)
- new_alias = self.join(join, reuse=reuse)
- if join.join_type == INNER:
- rhs_votes.add(new_alias)
- # We can't reuse the same join again in the query. If we have two
- # distinct joins for the same connection in rhs query, then the
- # combined query must have two joins, too.
- reuse.discard(new_alias)
- if alias != new_alias:
- change_map[alias] = new_alias
- if not rhs.alias_refcount[alias]:
- # The alias was unused in the rhs query. Unref it so that it
- # will be unused in the new query, too. We have to add and
- # unref the alias so that join promotion has information of
- # the join type for the unused alias.
- self.unref_alias(new_alias)
- joinpromoter.add_votes(rhs_votes)
- joinpromoter.update_join_types(self)
-
- # Now relabel a copy of the rhs where-clause and add it to the current
- # one.
- w = rhs.where.clone()
- w.relabel_aliases(change_map)
- self.where.add(w, connector)
-
- # Selection columns and extra extensions are those provided by 'rhs'.
- self.select = []
- for col in rhs.select:
- self.add_select(col.relabeled_clone(change_map))
-
- if connector == OR:
- # It would be nice to be able to handle this, but the queries don't
- # really make sense (or return consistent value sets). Not worth
- # the extra complexity when you can write a real query instead.
- if self._extra and rhs._extra:
- raise ValueError("When merging querysets using 'or', you "
- "cannot have extra(select=...) on both sides.")
- self.extra.update(rhs.extra)
- extra_select_mask = set()
- if self.extra_select_mask is not None:
- extra_select_mask.update(self.extra_select_mask)
- if rhs.extra_select_mask is not None:
- extra_select_mask.update(rhs.extra_select_mask)
- if extra_select_mask:
- self.set_extra_mask(extra_select_mask)
- self.extra_tables += rhs.extra_tables
-
- # Ordering uses the 'rhs' ordering, unless it has none, in which case
- # the current ordering is used.
- self.order_by = rhs.order_by[:] if rhs.order_by else self.order_by
- self.extra_order_by = rhs.extra_order_by or self.extra_order_by
-
- def deferred_to_data(self, target, callback):
- """
- Converts the self.deferred_loading data structure to an alternate data
- structure, describing the field that *will* be loaded. This is used to
- compute the columns to select from the database and also by the
- QuerySet class to work out which fields are being initialized on each
- model. Models that have all their fields included aren't mentioned in
- the result, only those that have field restrictions in place.
-
- The "target" parameter is the instance that is populated (in place).
- The "callback" is a function that is called whenever a (model, field)
- pair need to be added to "target". It accepts three parameters:
- "target", and the model and list of fields being added for that model.
- """
- field_names, defer = self.deferred_loading
- if not field_names:
- return
- orig_opts = self.get_meta()
- seen = {}
- must_include = {orig_opts.concrete_model: {orig_opts.pk}}
- for field_name in field_names:
- parts = field_name.split(LOOKUP_SEP)
- cur_model = self.model._meta.concrete_model
- opts = orig_opts
- for name in parts[:-1]:
- old_model = cur_model
- source = opts.get_field(name)
- if is_reverse_o2o(source):
- cur_model = source.related_model
- else:
- cur_model = source.remote_field.model
- opts = cur_model._meta
- # Even if we're "just passing through" this model, we must add
- # both the current model's pk and the related reference field
- # (if it's not a reverse relation) to the things we select.
- if not is_reverse_o2o(source):
- must_include[old_model].add(source)
- add_to_dict(must_include, cur_model, opts.pk)
- field = opts.get_field(parts[-1])
- is_reverse_object = field.auto_created and not field.concrete
- model = field.related_model if is_reverse_object else field.model
- model = model._meta.concrete_model
- if model == opts.model:
- model = cur_model
- if not is_reverse_o2o(field):
- add_to_dict(seen, model, field)
-
- if defer:
- # We need to load all fields for each model, except those that
- # appear in "seen" (for all models that appear in "seen"). The only
- # slight complexity here is handling fields that exist on parent
- # models.
- workset = {}
- for model, values in six.iteritems(seen):
- for field in model._meta.fields:
- if field in values:
- continue
- m = field.model._meta.concrete_model
- add_to_dict(workset, m, field)
- for model, values in six.iteritems(must_include):
- # If we haven't included a model in workset, we don't add the
- # corresponding must_include fields for that model, since an
- # empty set means "include all fields". That's why there's no
- # "else" branch here.
- if model in workset:
- workset[model].update(values)
- for model, values in six.iteritems(workset):
- callback(target, model, values)
- else:
- for model, values in six.iteritems(must_include):
- if model in seen:
- seen[model].update(values)
- else:
- # As we've passed through this model, but not explicitly
- # included any fields, we have to make sure it's mentioned
- # so that only the "must include" fields are pulled in.
- seen[model] = values
- # Now ensure that every model in the inheritance chain is mentioned
- # in the parent list. Again, it must be mentioned to ensure that
- # only "must include" fields are pulled in.
- for model in orig_opts.get_parent_list():
- if model not in seen:
- seen[model] = set()
- for model, values in six.iteritems(seen):
- callback(target, model, values)
-
- def table_alias(self, table_name, create=False):
- """
- Returns a table alias for the given table_name and whether this is a
- new alias or not.
-
- If 'create' is true, a new alias is always created. Otherwise, the
- most recently created alias for the table (if one exists) is reused.
- """
- alias_list = self.table_map.get(table_name)
- if not create and alias_list:
- alias = alias_list[0]
- self.alias_refcount[alias] += 1
- return alias, False
-
- # Create a new alias for this table.
- if alias_list:
- alias = '%s%d' % (self.alias_prefix, len(self.alias_map) + 1)
- alias_list.append(alias)
- else:
- # The first occurrence of a table uses the table name directly.
- alias = table_name
- self.table_map[alias] = [alias]
- self.alias_refcount[alias] = 1
- self.tables.append(alias)
- return alias, True
-
- def ref_alias(self, alias):
- """ Increases the reference count for this alias. """
- self.alias_refcount[alias] += 1
-
- def unref_alias(self, alias, amount=1):
- """ Decreases the reference count for this alias. """
- self.alias_refcount[alias] -= amount
-
- def promote_joins(self, aliases):
- """
- Promotes recursively the join type of given aliases and its children to
- an outer join. If 'unconditional' is False, the join is only promoted if
- it is nullable or the parent join is an outer join.
-
- The children promotion is done to avoid join chains that contain a LOUTER
- b INNER c. So, if we have currently a INNER b INNER c and a->b is promoted,
- then we must also promote b->c automatically, or otherwise the promotion
- of a->b doesn't actually change anything in the query results.
- """
- aliases = list(aliases)
- while aliases:
- alias = aliases.pop(0)
- if self.alias_map[alias].join_type is None:
- # This is the base table (first FROM entry) - this table
- # isn't really joined at all in the query, so we should not
- # alter its join type.
- continue
- # Only the first alias (skipped above) should have None join_type
- assert self.alias_map[alias].join_type is not None
- parent_alias = self.alias_map[alias].parent_alias
- parent_louter = (
- parent_alias
- and self.alias_map[parent_alias].join_type == LOUTER)
- already_louter = self.alias_map[alias].join_type == LOUTER
- if ((self.alias_map[alias].nullable or parent_louter) and
- not already_louter):
- self.alias_map[alias] = self.alias_map[alias].promote()
- # Join type of 'alias' changed, so re-examine all aliases that
- # refer to this one.
- aliases.extend(
- join for join in self.alias_map.keys()
- if (self.alias_map[join].parent_alias == alias
- and join not in aliases))
-
- def demote_joins(self, aliases):
- """
- Change join type from LOUTER to INNER for all joins in aliases.
-
- Similarly to promote_joins(), this method must ensure no join chains
- containing first an outer, then an inner join are generated. If we
- are demoting b->c join in chain a LOUTER b LOUTER c then we must
- demote a->b automatically, or otherwise the demotion of b->c doesn't
- actually change anything in the query results. .
- """
- aliases = list(aliases)
- while aliases:
- alias = aliases.pop(0)
- if self.alias_map[alias].join_type == LOUTER:
- self.alias_map[alias] = self.alias_map[alias].demote()
- parent_alias = self.alias_map[alias].parent_alias
- if self.alias_map[parent_alias].join_type == INNER:
- aliases.append(parent_alias)
-
- def reset_refcounts(self, to_counts):
- """
- This method will reset reference counts for aliases so that they match
- the value passed in :param to_counts:.
- """
- for alias, cur_refcount in self.alias_refcount.copy().items():
- unref_amount = cur_refcount - to_counts.get(alias, 0)
- self.unref_alias(alias, unref_amount)
-
- def change_aliases(self, change_map):
- """
- Changes the aliases in change_map (which maps old-alias -> new-alias),
- relabelling any references to them in select columns and the where
- clause.
- """
- assert set(change_map.keys()).intersection(set(change_map.values())) == set()
-
- def relabel_column(col):
- if isinstance(col, (list, tuple)):
- old_alias = col[0]
- return (change_map.get(old_alias, old_alias), col[1])
- else:
- return col.relabeled_clone(change_map)
- # 1. Update references in "select" (normal columns plus aliases),
- # "group by" and "where".
- self.where.relabel_aliases(change_map)
- if isinstance(self.group_by, list):
- self.group_by = [relabel_column(col) for col in self.group_by]
- self.select = [col.relabeled_clone(change_map) for col in self.select]
- if self._annotations:
- self._annotations = OrderedDict(
- (key, relabel_column(col)) for key, col in self._annotations.items())
-
- # 2. Rename the alias in the internal table/alias datastructures.
- for old_alias, new_alias in six.iteritems(change_map):
- if old_alias not in self.alias_map:
- continue
- alias_data = self.alias_map[old_alias].relabeled_clone(change_map)
- self.alias_map[new_alias] = alias_data
- self.alias_refcount[new_alias] = self.alias_refcount[old_alias]
- del self.alias_refcount[old_alias]
- del self.alias_map[old_alias]
-
- table_aliases = self.table_map[alias_data.table_name]
- for pos, alias in enumerate(table_aliases):
- if alias == old_alias:
- table_aliases[pos] = new_alias
- break
- for pos, alias in enumerate(self.tables):
- if alias == old_alias:
- self.tables[pos] = new_alias
- break
- self.external_aliases = {change_map.get(alias, alias)
- for alias in self.external_aliases}
-
- def bump_prefix(self, outer_query):
- """
- Changes the alias prefix to the next letter in the alphabet in a way
- that the outer query's aliases and this query's aliases will not
- conflict. Even tables that previously had no alias will get an alias
- after this call.
- """
- def prefix_gen():
- """
- Generates a sequence of characters in alphabetical order:
- -> 'A', 'B', 'C', ...
-
- When the alphabet is finished, the sequence will continue with the
- Cartesian product:
- -> 'AA', 'AB', 'AC', ...
- """
- alphabet = ascii_uppercase
- prefix = chr(ord(self.alias_prefix) + 1)
- yield prefix
- for n in count(1):
- seq = alphabet[alphabet.index(prefix):] if prefix else alphabet
- for s in product(seq, repeat=n):
- yield ''.join(s)
- prefix = None
-
- if self.alias_prefix != outer_query.alias_prefix:
- # No clashes between self and outer query should be possible.
- return
-
- local_recursion_limit = 127 # explicitly avoid infinite loop
- for pos, prefix in enumerate(prefix_gen()):
- if prefix not in self.subq_aliases:
- self.alias_prefix = prefix
- break
- if pos > local_recursion_limit:
- raise RuntimeError(
- 'Maximum recursion depth exceeded: too many subqueries.'
- )
- self.subq_aliases = self.subq_aliases.union([self.alias_prefix])
- outer_query.subq_aliases = outer_query.subq_aliases.union(self.subq_aliases)
- change_map = OrderedDict()
- for pos, alias in enumerate(self.tables):
- new_alias = '%s%d' % (self.alias_prefix, pos)
- change_map[alias] = new_alias
- self.tables[pos] = new_alias
- self.change_aliases(change_map)
-
- def get_initial_alias(self):
- """
- Returns the first alias for this query, after increasing its reference
- count.
- """
- if self.tables:
- alias = self.tables[0]
- self.ref_alias(alias)
- else:
- alias = self.join(BaseTable(self.get_meta().db_table, None))
- return alias
-
- def count_active_tables(self):
- """
- Returns the number of tables in this query with a non-zero reference
- count. Note that after execution, the reference counts are zeroed, so
- tables added in compiler will not be seen by this method.
- """
- return len([1 for count in self.alias_refcount.values() if count])
-
- def join(self, join, reuse=None):
- """
- Returns an alias for the join in 'connection', either reusing an
- existing alias for that join or creating a new one. 'connection' is a
- tuple (lhs, table, join_cols) where 'lhs' is either an existing
- table alias or a table name. 'join_cols' is a tuple of tuples containing
- columns to join on ((l_id1, r_id1), (l_id2, r_id2)). The join corresponds
- to the SQL equivalent of::
-
- lhs.l_id1 = table.r_id1 AND lhs.l_id2 = table.r_id2
-
- The 'reuse' parameter can be either None which means all joins
- (matching the connection) are reusable, or it can be a set containing
- the aliases that can be reused.
-
- A join is always created as LOUTER if the lhs alias is LOUTER to make
- sure we do not generate chains like t1 LOUTER t2 INNER t3. All new
- joins are created as LOUTER if nullable is True.
-
- If 'nullable' is True, the join can potentially involve NULL values and
- is a candidate for promotion (to "left outer") when combining querysets.
-
- The 'join_field' is the field we are joining along (if any).
- """
- reuse = [a for a, j in self.alias_map.items()
- if (reuse is None or a in reuse) and j == join]
- if reuse:
- self.ref_alias(reuse[0])
- return reuse[0]
-
- # No reuse is possible, so we need a new alias.
- alias, _ = self.table_alias(join.table_name, create=True)
- if join.join_type:
- if self.alias_map[join.parent_alias].join_type == LOUTER or join.nullable:
- join_type = LOUTER
- else:
- join_type = INNER
- join.join_type = join_type
- join.table_alias = alias
- self.alias_map[alias] = join
- return alias
-
- def join_parent_model(self, opts, model, alias, seen):
- """
- Makes sure the given 'model' is joined in the query. If 'model' isn't
- a parent of 'opts' or if it is None this method is a no-op.
-
- The 'alias' is the root alias for starting the join, 'seen' is a dict
- of model -> alias of existing joins. It must also contain a mapping
- of None -> some alias. This will be returned in the no-op case.
- """
- if model in seen:
- return seen[model]
- chain = opts.get_base_chain(model)
- if not chain:
- return alias
- curr_opts = opts
- for int_model in chain:
- if int_model in seen:
- curr_opts = int_model._meta
- alias = seen[int_model]
- continue
- # Proxy model have elements in base chain
- # with no parents, assign the new options
- # object and skip to the next base in that
- # case
- if not curr_opts.parents[int_model]:
- curr_opts = int_model._meta
- continue
- link_field = curr_opts.get_ancestor_link(int_model)
- _, _, _, joins, _ = self.setup_joins(
- [link_field.name], curr_opts, alias)
- curr_opts = int_model._meta
- alias = seen[int_model] = joins[-1]
- return alias or seen[None]
-
- def add_aggregate(self, aggregate, model, alias, is_summary):
- warnings.warn(
- "add_aggregate() is deprecated. Use add_annotation() instead.",
- RemovedInDjango110Warning, stacklevel=2)
- self.add_annotation(aggregate, alias, is_summary)
-
- def add_annotation(self, annotation, alias, is_summary=False):
- """
- Adds a single annotation expression to the Query
- """
- annotation = annotation.resolve_expression(self, allow_joins=True, reuse=None,
- summarize=is_summary)
- self.append_annotation_mask([alias])
- self.annotations[alias] = annotation
-
- def prepare_lookup_value(self, value, lookups, can_reuse, allow_joins=True):
- # Default lookup if none given is exact.
- used_joins = []
- if len(lookups) == 0:
- lookups = ['exact']
- # Interpret '__exact=None' as the sql 'is NULL'; otherwise, reject all
- # uses of None as a query value.
- if value is None:
- if lookups[-1] not in ('exact', 'iexact'):
- raise ValueError("Cannot use None as a query value")
- lookups[-1] = 'isnull'
- value = True
- elif hasattr(value, 'resolve_expression'):
- pre_joins = self.alias_refcount.copy()
- value = value.resolve_expression(self, reuse=can_reuse, allow_joins=allow_joins)
- used_joins = [k for k, v in self.alias_refcount.items() if v > pre_joins.get(k, 0)]
- # Subqueries need to use a different set of aliases than the
- # outer query. Call bump_prefix to change aliases of the inner
- # query (the value).
- if hasattr(value, 'query') and hasattr(value.query, 'bump_prefix'):
- value = value._clone()
- value.query.bump_prefix(self)
- if hasattr(value, 'bump_prefix'):
- value = value.clone()
- value.bump_prefix(self)
- # For Oracle '' is equivalent to null. The check needs to be done
- # at this stage because join promotion can't be done at compiler
- # stage. Using DEFAULT_DB_ALIAS isn't nice, but it is the best we
- # can do here. Similar thing is done in is_nullable(), too.
- if (connections[DEFAULT_DB_ALIAS].features.interprets_empty_strings_as_nulls and
- lookups[-1] == 'exact' and value == ''):
- value = True
- lookups[-1] = 'isnull'
- return value, lookups, used_joins
-
- def solve_lookup_type(self, lookup):
- """
- Solve the lookup type from the lookup (eg: 'foobar__id__icontains')
- """
- lookup_splitted = lookup.split(LOOKUP_SEP)
- if self._annotations:
- expression, expression_lookups = refs_expression(lookup_splitted, self.annotations)
- if expression:
- return expression_lookups, (), expression
- _, field, _, lookup_parts = self.names_to_path(lookup_splitted, self.get_meta())
- field_parts = lookup_splitted[0:len(lookup_splitted) - len(lookup_parts)]
- if len(lookup_parts) == 0:
- lookup_parts = ['exact']
- elif len(lookup_parts) > 1:
- if not field_parts:
- raise FieldError(
- 'Invalid lookup "%s" for model %s".' %
- (lookup, self.get_meta().model.__name__))
- return lookup_parts, field_parts, False
-
- def check_query_object_type(self, value, opts, field):
- """
- Checks whether the object passed while querying is of the correct type.
- If not, it raises a ValueError specifying the wrong object.
- """
- if hasattr(value, '_meta'):
- if not check_rel_lookup_compatibility(value._meta.model, opts, field):
- raise ValueError(
- 'Cannot query "%s": Must be "%s" instance.' %
- (value, opts.object_name))
-
- def check_related_objects(self, field, value, opts):
- """
- Checks the type of object passed to query relations.
- """
- if field.is_relation:
- # QuerySets implement is_compatible_query_object_type() to
- # determine compatibility with the given field.
- if hasattr(value, 'is_compatible_query_object_type'):
- if not value.is_compatible_query_object_type(opts, field):
- raise ValueError(
- 'Cannot use QuerySet for "%s": Use a QuerySet for "%s".' %
- (value.model._meta.model_name, opts.object_name)
- )
- elif hasattr(value, '_meta'):
- self.check_query_object_type(value, opts, field)
- elif hasattr(value, '__iter__'):
- for v in value:
- self.check_query_object_type(v, opts, field)
-
- def build_lookup(self, lookups, lhs, rhs):
- """
- Tries to extract transforms and lookup from given lhs.
-
- The lhs value is something that works like SQLExpression.
- The rhs value is what the lookup is going to compare against.
- The lookups is a list of names to extract using get_lookup()
- and get_transform().
- """
- lookups = lookups[:]
- while lookups:
- name = lookups[0]
- # If there is just one part left, try first get_lookup() so
- # that if the lhs supports both transform and lookup for the
- # name, then lookup will be picked.
- if len(lookups) == 1:
- final_lookup = lhs.get_lookup(name)
- if not final_lookup:
- # We didn't find a lookup. We are going to interpret
- # the name as transform, and do an Exact lookup against
- # it.
- lhs = self.try_transform(lhs, name, lookups)
- final_lookup = lhs.get_lookup('exact')
- return final_lookup(lhs, rhs)
- lhs = self.try_transform(lhs, name, lookups)
- lookups = lookups[1:]
-
- def try_transform(self, lhs, name, rest_of_lookups):
- """
- Helper method for build_lookup. Tries to fetch and initialize
- a transform for name parameter from lhs.
- """
- transform_class = lhs.get_transform(name)
- if transform_class:
- return transform_class(lhs)
- else:
- raise FieldError(
- "Unsupported lookup '%s' for %s or join on the field not "
- "permitted." %
- (name, lhs.output_field.__class__.__name__))
-
- def build_filter(self, filter_expr, branch_negated=False, current_negated=False,
- can_reuse=None, connector=AND, allow_joins=True, split_subq=True):
- """
- Builds a WhereNode for a single filter clause, but doesn't add it
- to this Query. Query.add_q() will then add this filter to the where
- Node.
-
- The 'branch_negated' tells us if the current branch contains any
- negations. This will be used to determine if subqueries are needed.
-
- The 'current_negated' is used to determine if the current filter is
- negated or not and this will be used to determine if IS NULL filtering
- is needed.
-
- The difference between current_netageted and branch_negated is that
- branch_negated is set on first negation, but current_negated is
- flipped for each negation.
-
- Note that add_filter will not do any negating itself, that is done
- upper in the code by add_q().
-
- The 'can_reuse' is a set of reusable joins for multijoins.
-
- The method will create a filter clause that can be added to the current
- query. However, if the filter isn't added to the query then the caller
- is responsible for unreffing the joins used.
- """
- if isinstance(filter_expr, dict):
- raise FieldError("Cannot parse keyword query as dict")
- arg, value = filter_expr
- if not arg:
- raise FieldError("Cannot parse keyword query %r" % arg)
- lookups, parts, reffed_expression = self.solve_lookup_type(arg)
- if not allow_joins and len(parts) > 1:
- raise FieldError("Joined field references are not permitted in this query")
-
- # Work out the lookup type and remove it from the end of 'parts',
- # if necessary.
- value, lookups, used_joins = self.prepare_lookup_value(value, lookups, can_reuse, allow_joins)
-
- clause = self.where_class()
- if reffed_expression:
- condition = self.build_lookup(lookups, reffed_expression, value)
- clause.add(condition, AND)
- return clause, []
-
- opts = self.get_meta()
- alias = self.get_initial_alias()
- allow_many = not branch_negated or not split_subq
-
- try:
- field, sources, opts, join_list, path = self.setup_joins(
- parts, opts, alias, can_reuse=can_reuse, allow_many=allow_many)
-
- # Prevent iterator from being consumed by check_related_objects()
- if isinstance(value, Iterator):
- value = list(value)
- self.check_related_objects(field, value, opts)
-
- # split_exclude() needs to know which joins were generated for the
- # lookup parts
- self._lookup_joins = join_list
- except MultiJoin as e:
- return self.split_exclude(filter_expr, LOOKUP_SEP.join(parts[:e.level]),
- can_reuse, e.names_with_path)
-
- if can_reuse is not None:
- can_reuse.update(join_list)
- used_joins = set(used_joins).union(set(join_list))
- targets, alias, join_list = self.trim_joins(sources, join_list, path)
-
- if field.is_relation:
- # No support for transforms for relational fields
- num_lookups = len(lookups)
- if num_lookups > 1:
- raise FieldError('Related Field got invalid lookup: {}'.format(lookups[0]))
- assert num_lookups > 0 # Likely a bug in Django if this fails.
- lookup_class = field.get_lookup(lookups[0])
- if len(targets) == 1:
- lhs = targets[0].get_col(alias, field)
- else:
- lhs = MultiColSource(alias, targets, sources, field)
- condition = lookup_class(lhs, value)
- lookup_type = lookup_class.lookup_name
- else:
- col = targets[0].get_col(alias, field)
- condition = self.build_lookup(lookups, col, value)
- lookup_type = condition.lookup_name
-
- clause.add(condition, AND)
-
- require_outer = lookup_type == 'isnull' and value is True and not current_negated
- if current_negated and (lookup_type != 'isnull' or value is False):
- require_outer = True
- if (lookup_type != 'isnull' and (
- self.is_nullable(targets[0]) or
- self.alias_map[join_list[-1]].join_type == LOUTER)):
- # The condition added here will be SQL like this:
- # NOT (col IS NOT NULL), where the first NOT is added in
- # upper layers of code. The reason for addition is that if col
- # is null, then col != someval will result in SQL "unknown"
- # which isn't the same as in Python. The Python None handling
- # is wanted, and it can be gotten by
- # (col IS NULL OR col != someval)
- # <=>
- # NOT (col IS NOT NULL AND col = someval).
- lookup_class = targets[0].get_lookup('isnull')
- clause.add(lookup_class(targets[0].get_col(alias, sources[0]), False), AND)
- return clause, used_joins if not require_outer else ()
-
- def add_filter(self, filter_clause):
- self.add_q(Q(**{filter_clause[0]: filter_clause[1]}))
-
- def add_q(self, q_object):
- """
- A preprocessor for the internal _add_q(). Responsible for doing final
- join promotion.
- """
- # For join promotion this case is doing an AND for the added q_object
- # and existing conditions. So, any existing inner join forces the join
- # type to remain inner. Existing outer joins can however be demoted.
- # (Consider case where rel_a is LOUTER and rel_a__col=1 is added - if
- # rel_a doesn't produce any rows, then the whole condition must fail.
- # So, demotion is OK.
- existing_inner = set(
- (a for a in self.alias_map if self.alias_map[a].join_type == INNER))
- clause, _ = self._add_q(q_object, self.used_aliases)
- if clause:
- self.where.add(clause, AND)
- self.demote_joins(existing_inner)
-
- def _add_q(self, q_object, used_aliases, branch_negated=False,
- current_negated=False, allow_joins=True, split_subq=True):
- """
- Adds a Q-object to the current filter.
- """
- connector = q_object.connector
- current_negated = current_negated ^ q_object.negated
- branch_negated = branch_negated or q_object.negated
- target_clause = self.where_class(connector=connector,
- negated=q_object.negated)
- joinpromoter = JoinPromoter(q_object.connector, len(q_object.children), current_negated)
- for child in q_object.children:
- if isinstance(child, Node):
- child_clause, needed_inner = self._add_q(
- child, used_aliases, branch_negated,
- current_negated, allow_joins, split_subq)
- joinpromoter.add_votes(needed_inner)
- else:
- child_clause, needed_inner = self.build_filter(
- child, can_reuse=used_aliases, branch_negated=branch_negated,
- current_negated=current_negated, connector=connector,
- allow_joins=allow_joins, split_subq=split_subq,
- )
- joinpromoter.add_votes(needed_inner)
- if child_clause:
- target_clause.add(child_clause, connector)
- needed_inner = joinpromoter.update_join_types(self)
- return target_clause, needed_inner
-
- def names_to_path(self, names, opts, allow_many=True, fail_on_missing=False):
- """
- Walks the list of names and turns them into PathInfo tuples. Note that
- a single name in 'names' can generate multiple PathInfos (m2m for
- example).
-
- 'names' is the path of names to travel, 'opts' is the model Options we
- start the name resolving from, 'allow_many' is as for setup_joins().
- If fail_on_missing is set to True, then a name that can't be resolved
- will generate a FieldError.
-
- Returns a list of PathInfo tuples. In addition returns the final field
- (the last used join field), and target (which is a field guaranteed to
- contain the same value as the final field). Finally, the method returns
- those names that weren't found (which are likely transforms and the
- final lookup).
- """
- path, names_with_path = [], []
- for pos, name in enumerate(names):
- cur_names_with_path = (name, [])
- if name == 'pk':
- name = opts.pk.name
-
- field = None
- try:
- field = opts.get_field(name)
- except FieldDoesNotExist:
- if name in self.annotation_select:
- field = self.annotation_select[name].output_field
-
- if field is not None:
- # Fields that contain one-to-many relations with a generic
- # model (like a GenericForeignKey) cannot generate reverse
- # relations and therefore cannot be used for reverse querying.
- if field.is_relation and not field.related_model:
- raise FieldError(
- "Field %r does not generate an automatic reverse "
- "relation and therefore cannot be used for reverse "
- "querying. If it is a GenericForeignKey, consider "
- "adding a GenericRelation." % name
- )
- try:
- model = field.model._meta.concrete_model
- except AttributeError:
- model = None
- else:
- # We didn't find the current field, so move position back
- # one step.
- pos -= 1
- if pos == -1 or fail_on_missing:
- field_names = list(get_field_names_from_opts(opts))
- available = sorted(field_names + list(self.annotation_select))
- raise FieldError("Cannot resolve keyword %r into field. "
- "Choices are: %s" % (name, ", ".join(available)))
- break
- # Check if we need any joins for concrete inheritance cases (the
- # field lives in parent, but we are currently in one of its
- # children)
- if model is not opts.model:
- # The field lives on a base class of the current model.
- # Skip the chain of proxy to the concrete proxied model
- proxied_model = opts.concrete_model
-
- for int_model in opts.get_base_chain(model):
- if int_model is proxied_model:
- opts = int_model._meta
- else:
- final_field = opts.parents[int_model]
- targets = (final_field.remote_field.get_related_field(),)
- opts = int_model._meta
- path.append(PathInfo(final_field.model._meta, opts, targets, final_field, False, True))
- cur_names_with_path[1].append(
- PathInfo(final_field.model._meta, opts, targets, final_field, False, True)
- )
- if hasattr(field, 'get_path_info'):
- pathinfos = field.get_path_info()
- if not allow_many:
- for inner_pos, p in enumerate(pathinfos):
- if p.m2m:
- cur_names_with_path[1].extend(pathinfos[0:inner_pos + 1])
- names_with_path.append(cur_names_with_path)
- raise MultiJoin(pos + 1, names_with_path)
- last = pathinfos[-1]
- path.extend(pathinfos)
- final_field = last.join_field
- opts = last.to_opts
- targets = last.target_fields
- cur_names_with_path[1].extend(pathinfos)
- names_with_path.append(cur_names_with_path)
- else:
- # Local non-relational field.
- final_field = field
- targets = (field,)
- if fail_on_missing and pos + 1 != len(names):
- raise FieldError(
- "Cannot resolve keyword %r into field. Join on '%s'"
- " not permitted." % (names[pos + 1], name))
- break
- return path, final_field, targets, names[pos + 1:]
-
- def setup_joins(self, names, opts, alias, can_reuse=None, allow_many=True):
- """
- Compute the necessary table joins for the passage through the fields
- given in 'names'. 'opts' is the Options class for the current model
- (which gives the table we are starting from), 'alias' is the alias for
- the table to start the joining from.
-
- The 'can_reuse' defines the reverse foreign key joins we can reuse. It
- can be None in which case all joins are reusable or a set of aliases
- that can be reused. Note that non-reverse foreign keys are always
- reusable when using setup_joins().
-
- If 'allow_many' is False, then any reverse foreign key seen will
- generate a MultiJoin exception.
-
- Returns the final field involved in the joins, the target field (used
- for any 'where' constraint), the final 'opts' value, the joins and the
- field path travelled to generate the joins.
-
- The target field is the field containing the concrete value. Final
- field can be something different, for example foreign key pointing to
- that value. Final field is needed for example in some value
- conversions (convert 'obj' in fk__id=obj to pk val using the foreign
- key field for example).
- """
- joins = [alias]
- # First, generate the path for the names
- path, final_field, targets, rest = self.names_to_path(
- names, opts, allow_many, fail_on_missing=True)
-
- # Then, add the path to the query's joins. Note that we can't trim
- # joins at this stage - we will need the information about join type
- # of the trimmed joins.
- for join in path:
- opts = join.to_opts
- if join.direct:
- nullable = self.is_nullable(join.join_field)
- else:
- nullable = True
- connection = Join(opts.db_table, alias, None, INNER, join.join_field, nullable)
- reuse = can_reuse if join.m2m else None
- alias = self.join(connection, reuse=reuse)
- joins.append(alias)
- return final_field, targets, opts, joins, path
-
- def trim_joins(self, targets, joins, path):
- """
- The 'target' parameter is the final field being joined to, 'joins'
- is the full list of join aliases. The 'path' contain the PathInfos
- used to create the joins.
-
- Returns the final target field and table alias and the new active
- joins.
-
- We will always trim any direct join if we have the target column
- available already in the previous table. Reverse joins can't be
- trimmed as we don't know if there is anything on the other side of
- the join.
- """
- joins = joins[:]
- for pos, info in enumerate(reversed(path)):
- if len(joins) == 1 or not info.direct:
- break
- join_targets = set(t.column for t in info.join_field.foreign_related_fields)
- cur_targets = set(t.column for t in targets)
- if not cur_targets.issubset(join_targets):
- break
- targets = tuple(r[0] for r in info.join_field.related_fields if r[1].column in cur_targets)
- self.unref_alias(joins.pop())
- return targets, joins[-1], joins
-
- def resolve_ref(self, name, allow_joins=True, reuse=None, summarize=False):
- if not allow_joins and LOOKUP_SEP in name:
- raise FieldError("Joined field references are not permitted in this query")
- if name in self.annotations:
- if summarize:
- # Summarize currently means we are doing an aggregate() query
- # which is executed as a wrapped subquery if any of the
- # aggregate() elements reference an existing annotation. In
- # that case we need to return a Ref to the subquery's annotation.
- return Ref(name, self.annotation_select[name])
- else:
- return self.annotation_select[name]
- else:
- field_list = name.split(LOOKUP_SEP)
- field, sources, opts, join_list, path = self.setup_joins(
- field_list, self.get_meta(),
- self.get_initial_alias(), reuse)
- targets, _, join_list = self.trim_joins(sources, join_list, path)
- if len(targets) > 1:
- raise FieldError("Referencing multicolumn fields with F() objects "
- "isn't supported")
- if reuse is not None:
- reuse.update(join_list)
- col = targets[0].get_col(join_list[-1], sources[0])
- return col
-
- def split_exclude(self, filter_expr, prefix, can_reuse, names_with_path):
- """
- When doing an exclude against any kind of N-to-many relation, we need
- to use a subquery. This method constructs the nested query, given the
- original exclude filter (filter_expr) and the portion up to the first
- N-to-many relation field.
-
- As an example we could have original filter ~Q(child__name='foo').
- We would get here with filter_expr = child__name, prefix = child and
- can_reuse is a set of joins usable for filters in the original query.
-
- We will turn this into equivalent of:
- WHERE NOT (pk IN (SELECT parent_id FROM thetable
- WHERE name = 'foo' AND parent_id IS NOT NULL))
-
- It might be worth it to consider using WHERE NOT EXISTS as that has
- saner null handling, and is easier for the backend's optimizer to
- handle.
- """
- # Generate the inner query.
- query = Query(self.model)
- query.add_filter(filter_expr)
- query.clear_ordering(True)
- # Try to have as simple as possible subquery -> trim leading joins from
- # the subquery.
- trimmed_prefix, contains_louter = query.trim_start(names_with_path)
-
- # Add extra check to make sure the selected field will not be null
- # since we are adding an IN <subquery> clause. This prevents the
- # database from tripping over IN (...,NULL,...) selects and returning
- # nothing
- col = query.select[0]
- select_field = col.target
- alias = col.alias
- if self.is_nullable(select_field):
- lookup_class = select_field.get_lookup('isnull')
- lookup = lookup_class(select_field.get_col(alias), False)
- query.where.add(lookup, AND)
- if alias in can_reuse:
- pk = select_field.model._meta.pk
- # Need to add a restriction so that outer query's filters are in effect for
- # the subquery, too.
- query.bump_prefix(self)
- lookup_class = select_field.get_lookup('exact')
- # Note that the query.select[0].alias is different from alias
- # due to bump_prefix above.
- lookup = lookup_class(pk.get_col(query.select[0].alias),
- pk.get_col(alias))
- query.where.add(lookup, AND)
- query.external_aliases.add(alias)
-
- condition, needed_inner = self.build_filter(
- ('%s__in' % trimmed_prefix, query),
- current_negated=True, branch_negated=True, can_reuse=can_reuse)
- if contains_louter:
- or_null_condition, _ = self.build_filter(
- ('%s__isnull' % trimmed_prefix, True),
- current_negated=True, branch_negated=True, can_reuse=can_reuse)
- condition.add(or_null_condition, OR)
- # Note that the end result will be:
- # (outercol NOT IN innerq AND outercol IS NOT NULL) OR outercol IS NULL.
- # This might look crazy but due to how IN works, this seems to be
- # correct. If the IS NOT NULL check is removed then outercol NOT
- # IN will return UNKNOWN. If the IS NULL check is removed, then if
- # outercol IS NULL we will not match the row.
- return condition, needed_inner
-
- def set_empty(self):
- self.where.add(NothingNode(), AND)
-
- def is_empty(self):
- return any(isinstance(c, NothingNode) for c in self.where.children)
-
- def set_limits(self, low=None, high=None):
- """
- Adjusts the limits on the rows retrieved. We use low/high to set these,
- as it makes it more Pythonic to read and write. When the SQL query is
- created, they are converted to the appropriate offset and limit values.
-
- Any limits passed in here are applied relative to the existing
- constraints. So low is added to the current low value and both will be
- clamped to any existing high value.
- """
- if high is not None:
- if self.high_mark is not None:
- self.high_mark = min(self.high_mark, self.low_mark + high)
- else:
- self.high_mark = self.low_mark + high
- if low is not None:
- if self.high_mark is not None:
- self.low_mark = min(self.high_mark, self.low_mark + low)
- else:
- self.low_mark = self.low_mark + low
-
- if self.low_mark == self.high_mark:
- self.set_empty()
-
- def clear_limits(self):
- """
- Clears any existing limits.
- """
- self.low_mark, self.high_mark = 0, None
-
- def can_filter(self):
- """
- Returns True if adding filters to this instance is still possible.
-
- Typically, this means no limits or offsets have been put on the results.
- """
- return not self.low_mark and self.high_mark is None
-
- def clear_select_clause(self):
- """
- Removes all fields from SELECT clause.
- """
- self.select = []
- self.default_cols = False
- self.select_related = False
- self.set_extra_mask(())
- self.set_annotation_mask(())
-
- def clear_select_fields(self):
- """
- Clears the list of fields to select (but not extra_select columns).
- Some queryset types completely replace any existing list of select
- columns.
- """
- self.select = []
- self.values_select = []
-
- def add_select(self, col):
- self.default_cols = False
- self.select.append(col)
-
- def set_select(self, cols):
- self.default_cols = False
- self.select = cols
-
- def add_distinct_fields(self, *field_names):
- """
- Adds and resolves the given fields to the query's "distinct on" clause.
- """
- self.distinct_fields = field_names
- self.distinct = True
-
- def add_fields(self, field_names, allow_m2m=True):
- """
- Adds the given (model) fields to the select set. The field names are
- added in the order specified.
- """
- alias = self.get_initial_alias()
- opts = self.get_meta()
-
- try:
- for name in field_names:
- # Join promotion note - we must not remove any rows here, so
- # if there is no existing joins, use outer join.
- _, targets, _, joins, path = self.setup_joins(
- name.split(LOOKUP_SEP), opts, alias, allow_many=allow_m2m)
- targets, final_alias, joins = self.trim_joins(targets, joins, path)
- for target in targets:
- self.add_select(target.get_col(final_alias))
- except MultiJoin:
- raise FieldError("Invalid field name: '%s'" % name)
- except FieldError:
- if LOOKUP_SEP in name:
- # For lookups spanning over relationships, show the error
- # from the model on which the lookup failed.
- raise
- else:
- names = sorted(list(get_field_names_from_opts(opts)) + list(self.extra)
- + list(self.annotation_select))
- raise FieldError("Cannot resolve keyword %r into field. "
- "Choices are: %s" % (name, ", ".join(names)))
-
- def add_ordering(self, *ordering):
- """
- Adds items from the 'ordering' sequence to the query's "order by"
- clause. These items are either field names (not column names) --
- possibly with a direction prefix ('-' or '?') -- or OrderBy
- expressions.
-
- If 'ordering' is empty, all ordering is cleared from the query.
- """
- errors = []
- for item in ordering:
- if not hasattr(item, 'resolve_expression') and not ORDER_PATTERN.match(item):
- errors.append(item)
- if getattr(item, 'contains_aggregate', False):
- raise FieldError(
- 'Using an aggregate in order_by() without also including '
- 'it in annotate() is not allowed: %s' % item
- )
- if errors:
- raise FieldError('Invalid order_by arguments: %s' % errors)
- if ordering:
- self.order_by.extend(ordering)
- else:
- self.default_ordering = False
-
- def clear_ordering(self, force_empty):
- """
- Removes any ordering settings. If 'force_empty' is True, there will be
- no ordering in the resulting query (not even the model's default).
- """
- self.order_by = []
- self.extra_order_by = ()
- if force_empty:
- self.default_ordering = False
-
- def set_group_by(self):
- """
- Expands the GROUP BY clause required by the query.
-
- This will usually be the set of all non-aggregate fields in the
- return data. If the database backend supports grouping by the
- primary key, and the query would be equivalent, the optimization
- will be made automatically.
- """
- self.group_by = []
-
- for col in self.select:
- self.group_by.append(col)
-
- if self.annotation_select:
- for alias, annotation in six.iteritems(self.annotation_select):
- for col in annotation.get_group_by_cols():
- self.group_by.append(col)
-
- def add_select_related(self, fields):
- """
- Sets up the select_related data structure so that we only select
- certain related models (as opposed to all models, when
- self.select_related=True).
- """
- if isinstance(self.select_related, bool):
- field_dict = {}
- else:
- field_dict = self.select_related
- for field in fields:
- d = field_dict
- for part in field.split(LOOKUP_SEP):
- d = d.setdefault(part, {})
- self.select_related = field_dict
-
- def add_extra(self, select, select_params, where, params, tables, order_by):
- """
- Adds data to the various extra_* attributes for user-created additions
- to the query.
- """
- if select:
- # We need to pair any placeholder markers in the 'select'
- # dictionary with their parameters in 'select_params' so that
- # subsequent updates to the select dictionary also adjust the
- # parameters appropriately.
- select_pairs = OrderedDict()
- if select_params:
- param_iter = iter(select_params)
- else:
- param_iter = iter([])
- for name, entry in select.items():
- entry = force_text(entry)
- entry_params = []
- pos = entry.find("%s")
- while pos != -1:
- if pos == 0 or entry[pos - 1] != '%':
- entry_params.append(next(param_iter))
- pos = entry.find("%s", pos + 2)
- select_pairs[name] = (entry, entry_params)
- # This is order preserving, since self.extra_select is an OrderedDict.
- self.extra.update(select_pairs)
- if where or params:
- self.where.add(ExtraWhere(where, params), AND)
- if tables:
- self.extra_tables += tuple(tables)
- if order_by:
- self.extra_order_by = order_by
-
- def clear_deferred_loading(self):
- """
- Remove any fields from the deferred loading set.
- """
- self.deferred_loading = (set(), True)
-
- def add_deferred_loading(self, field_names):
- """
- Add the given list of model field names to the set of fields to
- exclude from loading from the database when automatic column selection
- is done. The new field names are added to any existing field names that
- are deferred (or removed from any existing field names that are marked
- as the only ones for immediate loading).
- """
- # Fields on related models are stored in the literal double-underscore
- # format, so that we can use a set datastructure. We do the foo__bar
- # splitting and handling when computing the SQL column names (as part of
- # get_columns()).
- existing, defer = self.deferred_loading
- if defer:
- # Add to existing deferred names.
- self.deferred_loading = existing.union(field_names), True
- else:
- # Remove names from the set of any existing "immediate load" names.
- self.deferred_loading = existing.difference(field_names), False
-
- def add_immediate_loading(self, field_names):
- """
- Add the given list of model field names to the set of fields to
- retrieve when the SQL is executed ("immediate loading" fields). The
- field names replace any existing immediate loading field names. If
- there are field names already specified for deferred loading, those
- names are removed from the new field_names before storing the new names
- for immediate loading. (That is, immediate loading overrides any
- existing immediate values, but respects existing deferrals.)
- """
- existing, defer = self.deferred_loading
- field_names = set(field_names)
- if 'pk' in field_names:
- field_names.remove('pk')
- field_names.add(self.get_meta().pk.name)
-
- if defer:
- # Remove any existing deferred names from the current set before
- # setting the new names.
- self.deferred_loading = field_names.difference(existing), False
- else:
- # Replace any existing "immediate load" field names.
- self.deferred_loading = field_names, False
-
- def get_loaded_field_names(self):
- """
- If any fields are marked to be deferred, returns a dictionary mapping
- models to a set of names in those fields that will be loaded. If a
- model is not in the returned dictionary, none of its fields are
- deferred.
-
- If no fields are marked for deferral, returns an empty dictionary.
- """
- # We cache this because we call this function multiple times
- # (compiler.fill_related_selections, query.iterator)
- try:
- return self._loaded_field_names_cache
- except AttributeError:
- collection = {}
- self.deferred_to_data(collection, self.get_loaded_field_names_cb)
- self._loaded_field_names_cache = collection
- return collection
-
- def get_loaded_field_names_cb(self, target, model, fields):
- """
- Callback used by get_deferred_field_names().
- """
- target[model] = {f.attname for f in fields}
-
- def set_aggregate_mask(self, names):
- warnings.warn(
- "set_aggregate_mask() is deprecated. Use set_annotation_mask() instead.",
- RemovedInDjango110Warning, stacklevel=2)
- self.set_annotation_mask(names)
-
- def set_annotation_mask(self, names):
- "Set the mask of annotations that will actually be returned by the SELECT"
- if names is None:
- self.annotation_select_mask = None
- else:
- self.annotation_select_mask = set(names)
- self._annotation_select_cache = None
-
- def append_aggregate_mask(self, names):
- warnings.warn(
- "append_aggregate_mask() is deprecated. Use append_annotation_mask() instead.",
- RemovedInDjango110Warning, stacklevel=2)
- self.append_annotation_mask(names)
-
- def append_annotation_mask(self, names):
- if self.annotation_select_mask is not None:
- self.set_annotation_mask(set(names).union(self.annotation_select_mask))
-
- def set_extra_mask(self, names):
- """
- Set the mask of extra select items that will be returned by SELECT,
- we don't actually remove them from the Query since they might be used
- later
- """
- if names is None:
- self.extra_select_mask = None
- else:
- self.extra_select_mask = set(names)
- self._extra_select_cache = None
-
- @property
- def annotation_select(self):
- """The OrderedDict of aggregate columns that are not masked, and should
- be used in the SELECT clause.
-
- This result is cached for optimization purposes.
- """
- if self._annotation_select_cache is not None:
- return self._annotation_select_cache
- elif not self._annotations:
- return {}
- elif self.annotation_select_mask is not None:
- self._annotation_select_cache = OrderedDict(
- (k, v) for k, v in self.annotations.items()
- if k in self.annotation_select_mask
- )
- return self._annotation_select_cache
- else:
- return self.annotations
-
- @property
- def aggregate_select(self):
- warnings.warn(
- "aggregate_select() is deprecated. Use annotation_select() instead.",
- RemovedInDjango110Warning, stacklevel=2)
- return self.annotation_select
-
- @property
- def extra_select(self):
- if self._extra_select_cache is not None:
- return self._extra_select_cache
- if not self._extra:
- return {}
- elif self.extra_select_mask is not None:
- self._extra_select_cache = OrderedDict(
- (k, v) for k, v in self.extra.items()
- if k in self.extra_select_mask
- )
- return self._extra_select_cache
- else:
- return self.extra
-
- def trim_start(self, names_with_path):
- """
- Trims joins from the start of the join path. The candidates for trim
- are the PathInfos in names_with_path structure that are m2m joins.
-
- Also sets the select column so the start matches the join.
-
- This method is meant to be used for generating the subquery joins &
- cols in split_exclude().
-
- Returns a lookup usable for doing outerq.filter(lookup=self). Returns
- also if the joins in the prefix contain a LEFT OUTER join.
- _"""
- all_paths = []
- for _, paths in names_with_path:
- all_paths.extend(paths)
- contains_louter = False
- # Trim and operate only on tables that were generated for
- # the lookup part of the query. That is, avoid trimming
- # joins generated for F() expressions.
- lookup_tables = [t for t in self.tables if t in self._lookup_joins or t == self.tables[0]]
- for trimmed_paths, path in enumerate(all_paths):
- if path.m2m:
- break
- if self.alias_map[lookup_tables[trimmed_paths + 1]].join_type == LOUTER:
- contains_louter = True
- alias = lookup_tables[trimmed_paths]
- self.unref_alias(alias)
- # The path.join_field is a Rel, lets get the other side's field
- join_field = path.join_field.field
- # Build the filter prefix.
- paths_in_prefix = trimmed_paths
- trimmed_prefix = []
- for name, path in names_with_path:
- if paths_in_prefix - len(path) < 0:
- break
- trimmed_prefix.append(name)
- paths_in_prefix -= len(path)
- trimmed_prefix.append(
- join_field.foreign_related_fields[0].name)
- trimmed_prefix = LOOKUP_SEP.join(trimmed_prefix)
- # Lets still see if we can trim the first join from the inner query
- # (that is, self). We can't do this for LEFT JOINs because we would
- # miss those rows that have nothing on the outer side.
- if self.alias_map[lookup_tables[trimmed_paths + 1]].join_type != LOUTER:
- select_fields = [r[0] for r in join_field.related_fields]
- select_alias = lookup_tables[trimmed_paths + 1]
- self.unref_alias(lookup_tables[trimmed_paths])
- extra_restriction = join_field.get_extra_restriction(
- self.where_class, None, lookup_tables[trimmed_paths + 1])
- if extra_restriction:
- self.where.add(extra_restriction, AND)
- else:
- # TODO: It might be possible to trim more joins from the start of the
- # inner query if it happens to have a longer join chain containing the
- # values in select_fields. Lets punt this one for now.
- select_fields = [r[1] for r in join_field.related_fields]
- select_alias = lookup_tables[trimmed_paths]
- # The found starting point is likely a Join instead of a BaseTable reference.
- # But the first entry in the query's FROM clause must not be a JOIN.
- for table in self.tables:
- if self.alias_refcount[table] > 0:
- self.alias_map[table] = BaseTable(self.alias_map[table].table_name, table)
- break
- self.set_select([f.get_col(select_alias) for f in select_fields])
- return trimmed_prefix, contains_louter
-
- def is_nullable(self, field):
- """
- A helper to check if the given field should be treated as nullable.
-
- Some backends treat '' as null and Django treats such fields as
- nullable for those backends. In such situations field.null can be
- False even if we should treat the field as nullable.
- """
- # We need to use DEFAULT_DB_ALIAS here, as QuerySet does not have
- # (nor should it have) knowledge of which connection is going to be
- # used. The proper fix would be to defer all decisions where
- # is_nullable() is needed to the compiler stage, but that is not easy
- # to do currently.
- if ((connections[DEFAULT_DB_ALIAS].features.interprets_empty_strings_as_nulls)
- and field.empty_strings_allowed):
- return True
- else:
- return field.null
-
-
- def get_order_dir(field, default='ASC'):
- """
- Returns the field name and direction for an order specification. For
- example, '-foo' is returned as ('foo', 'DESC').
-
- The 'default' param is used to indicate which way no prefix (or a '+'
- prefix) should sort. The '-' prefix always sorts the opposite way.
- """
- dirn = ORDER_DIR[default]
- if field[0] == '-':
- return field[1:], dirn[1]
- return field, dirn[0]
-
-
- def add_to_dict(data, key, value):
- """
- A helper function to add "value" to the set of values for "key", whether or
- not "key" already exists.
- """
- if key in data:
- data[key].add(value)
- else:
- data[key] = {value}
-
-
- def is_reverse_o2o(field):
- """
- A little helper to check if the given field is reverse-o2o. The field is
- expected to be some sort of relation field or related object.
- """
- return field.is_relation and field.one_to_one and not field.concrete
-
-
- class JoinPromoter(object):
- """
- A class to abstract away join promotion problems for complex filter
- conditions.
- """
-
- def __init__(self, connector, num_children, negated):
- self.connector = connector
- self.negated = negated
- if self.negated:
- if connector == AND:
- self.effective_connector = OR
- else:
- self.effective_connector = AND
- else:
- self.effective_connector = self.connector
- self.num_children = num_children
- # Maps of table alias to how many times it is seen as required for
- # inner and/or outer joins.
- self.votes = Counter()
-
- def add_votes(self, votes):
- """
- Add single vote per item to self.votes. Parameter can be any
- iterable.
- """
- self.votes.update(votes)
-
- def update_join_types(self, query):
- """
- Change join types so that the generated query is as efficient as
- possible, but still correct. So, change as many joins as possible
- to INNER, but don't make OUTER joins INNER if that could remove
- results from the query.
- """
- to_promote = set()
- to_demote = set()
- # The effective_connector is used so that NOT (a AND b) is treated
- # similarly to (a OR b) for join promotion.
- for table, votes in self.votes.items():
- # We must use outer joins in OR case when the join isn't contained
- # in all of the joins. Otherwise the INNER JOIN itself could remove
- # valid results. Consider the case where a model with rel_a and
- # rel_b relations is queried with rel_a__col=1 | rel_b__col=2. Now,
- # if rel_a join doesn't produce any results is null (for example
- # reverse foreign key or null value in direct foreign key), and
- # there is a matching row in rel_b with col=2, then an INNER join
- # to rel_a would remove a valid match from the query. So, we need
- # to promote any existing INNER to LOUTER (it is possible this
- # promotion in turn will be demoted later on).
- if self.effective_connector == 'OR' and votes < self.num_children:
- to_promote.add(table)
- # If connector is AND and there is a filter that can match only
- # when there is a joinable row, then use INNER. For example, in
- # rel_a__col=1 & rel_b__col=2, if either of the rels produce NULL
- # as join output, then the col=1 or col=2 can't match (as
- # NULL=anything is always false).
- # For the OR case, if all children voted for a join to be inner,
- # then we can use INNER for the join. For example:
- # (rel_a__col__icontains=Alex | rel_a__col__icontains=Russell)
- # then if rel_a doesn't produce any rows, the whole condition
- # can't match. Hence we can safely use INNER join.
- if self.effective_connector == 'AND' or (
- self.effective_connector == 'OR' and votes == self.num_children):
- to_demote.add(table)
- # Finally, what happens in cases where we have:
- # (rel_a__col=1|rel_b__col=2) & rel_a__col__gte=0
- # Now, we first generate the OR clause, and promote joins for it
- # in the first if branch above. Both rel_a and rel_b are promoted
- # to LOUTER joins. After that we do the AND case. The OR case
- # voted no inner joins but the rel_a__col__gte=0 votes inner join
- # for rel_a. We demote it back to INNER join (in AND case a single
- # vote is enough). The demotion is OK, if rel_a doesn't produce
- # rows, then the rel_a__col__gte=0 clause can't be true, and thus
- # the whole clause must be false. So, it is safe to use INNER
- # join.
- # Note that in this example we could just as well have the __gte
- # clause and the OR clause swapped. Or we could replace the __gte
- # clause with an OR clause containing rel_a__col=1|rel_a__col=2,
- # and again we could safely demote to INNER.
- query.promote_joins(to_promote)
- query.demote_joins(to_demote)
- return to_demote
|