--- id: examples title: Examples --- Here are some more examples. ## Grouped Workers on AWS ```python from diagrams import Diagram from diagrams.aws.compute import EC2 from diagrams.aws.database import RDS from diagrams.aws.network import ELB with Diagram("Grouped Workers", show=False, direction="TB"): ELB("lb") >> [EC2("worker1"), EC2("worker2"), EC2("worker3"), EC2("worker4"), EC2("worker5")] >> RDS("events") ``` ![grouped workers diagram](/img/grouped_workers_diagram.png) ## Clustered Web Services ```python from diagrams import Cluster, Diagram from diagrams.aws.compute import ECS from diagrams.aws.database import ElastiCache, RDS from diagrams.aws.network import ELB from diagrams.aws.network import Route53 with Diagram("Clustered Web Services", show=False): dns = Route53("dns") lb = ELB("lb") with Cluster("Services"): svc_group = [ECS("web1"), ECS("web2"), ECS("web3")] with Cluster("DB Cluster"): db_master = RDS("userdb") db_master - [RDS("userdb ro")] memcached = ElastiCache("memcached") dns >> lb >> svc_group svc_group >> db_master svc_group >> memcached ``` ![clustered web services diagram](/img/clustered_web_services_diagram.png) ## Event Processing on AWS ```python from diagrams import Cluster, Diagram from diagrams.aws.compute import ECS, EKS, Lambda from diagrams.aws.database import Redshift from diagrams.aws.integration import SQS from diagrams.aws.storage import S3 with Diagram("Event Processing", show=False): source = EKS("k8s source") with Cluster("Event Flows"): with Cluster("Event Workers"): workers = [ECS("worker1"), ECS("worker2"), ECS("worker3")] queue = SQS("event queue") with Cluster("Processing"): handlers = [Lambda("proc1"), Lambda("proc2"), Lambda("proc3")] store = S3("events store") dw = Redshift("analytics") source >> workers >> queue >> handlers handlers >> store handlers >> dw ``` ![event processing diagram](/img/event_processing_diagram.png) ## Message Collecting System on GCP ```python from diagrams import Cluster, Diagram from diagrams.gcp.analytics import BigQuery, Dataflow, PubSub from diagrams.gcp.compute import AppEngine, Functions from diagrams.gcp.database import BigTable from diagrams.gcp.iot import IotCore from diagrams.gcp.storage import GCS with Diagram("Message Collecting", show=False): pubsub = PubSub("pubsub") with Cluster("Source of Data"): [IotCore("core1"), IotCore("core2"), IotCore("core3")] >> pubsub with Cluster("Targets"): with Cluster("Data Flow"): flow = Dataflow("data flow") with Cluster("Data Lake"): flow >> [BigQuery("bq"), GCS("storage")] with Cluster("Event Driven"): with Cluster("Processing"): flow >> AppEngine("engine") >> BigTable("bigtable") with Cluster("Serverless"): flow >> Functions("func") >> AppEngine("appengine") pubsub >> flow ``` ![message collecting diagram](/img/message_collecting_diagram.png) ## Exposed Pod with 3 Replicas on Kubernetes ```python from diagrams import Diagram from diagrams.k8s.clusterconfig import HPA from diagrams.k8s.compute import Deployment, Pod, ReplicaSet from diagrams.k8s.network import Ingress, Service with Diagram("Exposed Pod with 3 Replicas", show=False): net = Ingress("domain.com") >> Service("svc") net >> [Pod("pod1"), Pod("pod2"), Pod("pod3")] << ReplicaSet("rs") << Deployment("dp") << HPA("hpa") ``` ![exposed pod with 3 replicas diagram](/img/exposed_pod_with_3_replicas_diagram.png) ## Stateful Architecture on Kubernetes ```python from diagrams import Cluster, Diagram from diagrams.k8s.compute import Pod, StatefulSet from diagrams.k8s.network import Service from diagrams.k8s.storage import PV, PVC, StorageClass with Diagram("Stateful Architecture", show=False): with Cluster("Apps"): svc = Service("svc") sts = StatefulSet("sts") apps = [] for _ in range(3): pod = Pod("pod") pvc = PVC("pvc") pod - sts - pvc apps.append(svc >> pod >> pvc) apps << PV("pv") << StorageClass("sc") ``` ![stateful architecture diagram](/img/stateful_architecture_diagram.png) ## Advanced Web Service with On-Premise ```python from diagrams import Cluster, Diagram from diagrams.onprem.analytics import Spark from diagrams.onprem.compute import Server from diagrams.onprem.database import PostgreSQL from diagrams.onprem.inmemory import Redis from diagrams.onprem.logging import Fluentd from diagrams.onprem.monitoring import Grafana, Prometheus from diagrams.onprem.network import Nginx from diagrams.onprem.queue import Kafka with Diagram("Advanced Web Service with On-Premise", show=False): ingress = Nginx("ingress") metrics = Prometheus("metric") metrics << Grafana("monitoring") with Cluster("Service Cluster"): grpcsvc = [ Server("grpc1"), Server("grpc2"), Server("grpc3")] with Cluster("Sessions HA"): master = Redis("session") master - Redis("replica") << metrics grpcsvc >> master with Cluster("Database HA"): master = PostgreSQL("users") master - PostgreSQL("slave") << metrics grpcsvc >> master aggregator = Fluentd("logging") aggregator >> Kafka("stream") >> Spark("analytics") ingress >> grpcsvc >> aggregator ``` ![advanced web service with on-premise diagram](/img/advanced_web_service_with_on-premise.png) ## Advanced Web Service with On-Premise (with colors and labels) ```python from diagrams import Cluster, Diagram, Edge from diagrams.onprem.analytics import Spark from diagrams.onprem.compute import Server from diagrams.onprem.database import PostgreSQL from diagrams.onprem.inmemory import Redis from diagrams.onprem.logging import Fluentd from diagrams.onprem.monitoring import Grafana, Prometheus from diagrams.onprem.network import Nginx from diagrams.onprem.queue import Kafka with Diagram(name="Advanced Web Service with On-Premise (colored)", show=False): ingress = Nginx("ingress") metrics = Prometheus("metric") metrics << Edge(color="firebrick", style="dashed") << Grafana("monitoring") with Cluster("Service Cluster"): grpcsvc = [ Server("grpc1"), Server("grpc2"), Server("grpc3")] with Cluster("Sessions HA"): master = Redis("session") master - Edge(color="brown", style="dashed") - Redis("replica") << Edge(label="collect") << metrics grpcsvc >> Edge(color="brown") >> master with Cluster("Database HA"): master = PostgreSQL("users") master - Edge(color="brown", style="dotted") - PostgreSQL("slave") << Edge(label="collect") << metrics grpcsvc >> Edge(color="black") >> master aggregator = Fluentd("logging") aggregator >> Edge(label="parse") >> Kafka("stream") >> Edge(color="black", style="bold") >> Spark("analytics") ingress >> Edge(color="darkgreen") << grpcsvc >> Edge(color="darkorange") >> aggregator ``` ![advanced web service with on-premise diagram colored](/img/advanced_web_service_with_on-premise_colored.png) ## RabbitMQ Consumers with Custom Nodes ```python from urllib.request import urlretrieve from diagrams import Cluster, Diagram from diagrams.custom import Custom from diagrams.aws.database import Aurora from diagrams.k8s.compute import Pod # Download an image to be used into a Custom Node class rabbitmq_url = "https://jpadilla.github.io/rabbitmqapp/assets/img/icon.png" rabbitmq_icon = "rabbitmq.png" urlretrieve(rabbitmq_url, rabbitmq_icon) with Diagram("Broker Consumers", show=False): with Cluster("Consumers"): consumers = [ Pod("worker"), Pod("worker"), Pod("worker") ] queue = Custom("Message queue", rabbitmq_icon) queue >> consumers >> Aurora("Database") ``` ![rabbitmq consumers diagram](/img/rabbitmq_consumers_diagram.png)