/*
* wfi.c:
* Wait for Interrupt test program
*
* This program demonstrates the use of the waitForInterrupt()
* function in wiringPi. It listens to a button input on
* BCM_GPIO pin 17 (wiringPi pin 0)
*
* The biggest issue with this method is that it really only works
* well in Sys mode.
*
* Jan 2013: This way of doing things is sort of deprecated now, see
* the wiringPiISR() function instead and the isr.c test program here.
*
* Copyright (c) 2012-2013 Gordon Henderson.
***********************************************************************
* This file is part of wiringPi:
* https://github.com/WiringPi/WiringPi/
*
* wiringPi is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* wiringPi is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with wiringPi. If not, see .
***********************************************************************
*/
#include
#include
#include
#include
#include
static int terminate_process = 0;
static void Signal_handler(int sig);
// A 'key' which we can lock and unlock - values are 0 through 3
// This is interpreted internally as a pthread_mutex by wiringPi
// which is hiding some of that to make life simple.
#define COUNT_KEY 0
// What BCM_GPIO input are we using?
#define BUTTON_PIN 26
// Debounce time in mS
#define DEBOUNCE_TIME 100
// globalCounter:
// Global variable to count interrupts
// Should be declared volatile to make sure the compiler doesn't cache it.
static volatile int globalCounter = 0;
/*
* waitForIt:
* This is a thread created using the wiringPi simplified threading
* mechanism. It will wait on an interrupt on the button and increment
* a counter.
*********************************************************************************
*/
PI_THREAD (waitForIt)
{
int state = 0;
int debounceTime = 0;
(void)piHiPri (10); // Set this thread to be high priority
(void)digitalRead (BUTTON_PIN); // pre-read pin to avoid false trigger
while (!terminate_process)
{
if (waitForInterrupt (BUTTON_PIN, -1) > 0) // Got it
{
// Bouncing?
if (millis() < debounceTime)
{
debounceTime = millis() + DEBOUNCE_TIME;
continue;
}
// We have a valid one
state ^= 1;
piLock (COUNT_KEY);
++globalCounter;
piUnlock (COUNT_KEY);
// Wait for key to be released
while (digitalRead (BUTTON_PIN) == LOW)
{
delayMs (10);
}
debounceTime = millis() + DEBOUNCE_TIME;
}
}
return (void *) NULL;
}
/*
* main
*********************************************************************************
*/
int main (void)
{
int lastCounter = 0;
int myCounter = 0;
// ----------------------------------
// Demo a crude but effective way to initialise the hardware
// Use the gpio program to initialise the hardware
// (This is the crude, but effective)
system ("gpio edge 26 falling");
// Setup wiringPi
wiringPiSetupSys();
// Fire off our interrupt handler
int tid = piThreadCreate (waitForIt);
// ----------------------------------
// Set the handler for SIGTERM (15)
signal(SIGTERM, Signal_handler);
signal(SIGINT, Signal_handler);
signal(SIGQUIT, Signal_handler);
signal(SIGTRAP, Signal_handler);
signal(SIGABRT, Signal_handler);
signal(SIGALRM, Signal_handler);
signal(SIGUSR1, Signal_handler);
signal(SIGUSR2, Signal_handler);
while (myCounter < 25)
{
printf ("Waiting ... ");
fflush (stdout);
while (myCounter == lastCounter)
{
piLock (COUNT_KEY);
myCounter = globalCounter;
piUnlock (COUNT_KEY);
delayMs(75);
}
if (terminate_process) break;
printf (" Done. myCounter: %5d\n", myCounter);
lastCounter = myCounter;
}
pthread_join(tid, NULL);
printf ("Done.\n");
return EXIT_SUCCESS;
}
//**********************************************************************************************************************
/**
* Intercepts and handles signals from QNX
* This function is called when the SIGTERM signal is raised by QNX
*/
void Signal_handler(int sig)
{
printf("Received signal %d\n", sig);
// Signal process to exit.
terminate_process = 1;
globalCounter++;
}
//**********************************************************************************************************************